
1

TUUG Lines

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Technical UNIXUser Group

INSIDE THIS ISSUE

THIS MONTH’S MEETING

Volume 4, Number 7 May 1992 $2.50

Newsletter Editor’s Ramblings
President’s Corner
Hardware: Static Electricity
Industry: Incompatibility and

Software Portability
Hands-on: Shared Memory for

Inter-Process Communication
Technology: Digital’s Alpha

Architecture
April 14th Meeting Minutes
May 12th Meeting Agenda

Meeting Location:
This month, the meeting is to be held at the U of M
again – room 234B in the new Engineering Building
(near the Senate Chambers). If you’ve found the
Engineering Building in the past, you’ll have no
problem. If not, it’s just south of University Centre.
The meeting is set to start at the usual time – 7:30
PM, on May 12, 1992.

Meeting Agenda:
See last page for details.

User Group Survey Results
By Roland Schneider

Thank-you for the excellent response to the survey. We
got 29 surveys back, that's almost 50% – better than
voter turnout for American elections! I'm just going to
summarize some of the more interesting results here –
if you want a complete breakdown of the results please
feel free to approach any member of the executive.

All about us
The most common applications are software develop-
ment (59%), word processing (55%), database (52%)
and electronic messaging (45%). (Totals can add to
more than 100% because more than one reply was
allowed.) Word perfect and Lotus 1-2-3 were the most
popular commercial software packages, although
“Other” was the true winner – I guess there's a lot os
specialized software in use. About half of us named
programming as our primary job function, followed by
support and consulting.

What we want
The most popular topic for presentations was networks
and communications (69%), closely followed by
UUCP, system administration, database applications,
X-windows, and system configuration (all over 50%).

Most of the other topics were also very popular. Most
of us seem to be interested in most aspects of UNIX,
from technical details to high-level applications.

Most of the members who replied favoured presen-
tations, demonstrations, and discussions, as well as site
visits and workshops to breakfast, lunch, or dinner
meetings.

As far as other services which could be provided
by the group, members are most interested in public
domain software exchange (62%), newsletters and
symposiums (59%), e-mail, bulletin boards, and day
seminars. In other words, everything.

What's next?
Your executive will use the survey results to guide
future directions and initiatives, but if you really want
to have a say, come out to an executive meeting. Your
ideas are always welcome, especially if they are backed
up by a commitment of the time and energy required to
implement them. ✒

Newsletter of the Technical UNIX  User Group

2

The Technical UNIX User Group meets at
7:30 PM the second Tuesday of every month,
except July and August. The newsletter is
mailed to all paid up members one week prior
to the meeting. Membership dues are $20
annually and are due at the October meeting.
Membership dues are accepted by mail and
dues for new members will be pro-rated
accordingly.

Technical UNIX User Group
P.O. Box 130

Saint-Boniface, Manitoba
R2H 3B4

Internet E-mail:
tuug@cs.umanitoba.ca

This newsletter is opyrighted by the Technical
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Technical UNIX User
Group are given credit.

The Technical UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

President: Susan Zuk (W) 788-7312
Past President: Eric Carsted 1-883-2570
Vice-President: Richard Kwiatkowski 589-4857
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Roland Schneider 1-482-5173
Membership Sec.: Allan Moulding 269-8054
Mailing List: Gilles Detillieux 489-7016
Meeting Coordinator: Kathy Norman 474-8311
Newsletter editor: Gilbert Detillieux 489-7016
Information: Susan Zuk (W) 788-7312

(FAX) 788-7450
(or) Gilbert Detillieux (H) 489-7016

(FAX) 269-9178

The Machine That’s Still Changing the World
By Gilbert Detillieux

RAMBLINGS

Copyright Policy and DisclaimerThe 1991-1992 Executive

Our Address Group Information

An interesting five-part series currently playing on PBS is
entitled The Machine That Changed the World. It started off
looking at early mechanical, electro-mechanical, and
electronic computers, and moved on to today’s technology,
it’s impact on society, and speculation about what the future
will bring. As I sit and work on this newsletter, I realise the
extent to which it’s affected my life. (I don’t really want to
think about whether it’s been for the better or for worse right
now. :-)

Certainly, this newsletter and the group itself would not
be possible without a lot of the technological changes that
have come about in the last few decades. I’m certainly
thankful for the technology that permits me to accomplish
the work I do, usually with relative ease. It’s also interesting
to speculate about how the job could be made much easier
with new and future technology in place. But despite all
these marvels of the modern world, behind it is still a group
of people dedicated to a cause they believe in.

Our newsletter wouldn’t be the success it is without the
efforts of a lot of people in the group who help me out
regularly. I’d like to thank our regular contributors, Susan
Zuk, Roland Schneider, Scott Balneaves, and Peter Graham,
as well as other occasional contributors, Allan Moulding and
Richard Kwiatkowski. I’d also like to thank Pat Bessler, who
typed in this month’s article from UniForum Monthly, and
has offered to help with future articles too.

On the subject of machines that change the world, and of
people dedicated to a cause, there’s an interesting organiza-
tion in the city that has been brought to my attention, called
Computers for Charities. They maintain a database of
charities that need either computer equipment or computer
expertise, and match them up with people who can provide
assistance. If you have some time to spare, or have some
equipment that you’re about to retire, consider helping
change the world for some worthy cause. For more informa-
tion, contact Dennis Bayomi at 788-6725. ✒

3

When you buy a board for your computer, it comes in a
pink, green, or grey plastic bag, usually with dire warnings
printed on it about avoiding static electricity. The bag itself
is conductive, so that any static will be drained away safely,
and you won’t have any problems if you’re careful. Why are
modern computer components so sensitive to static electric-
ity?

Most of the components in computers consist of NMOS
or CMOS integrated circuits. In either case, the MOS part
stands for Metal Oxide Semiconductor, the three layers
making up an integrated transistor. The metal layer (actually
polysilicon, nowadays) is on top, the semiconductor (silicon)
on the bottom, and the oxide (silicon dioxide) is the insulat-
ing layer between them.

The transistor is like a
switch, and the voltage on
the polysilicon “gate”
controls whether
current can flow
from the semicon-
ductor “drain” on
one side of the gate to
the “source” on the other.
Because the gate is insulated from the semiconductor by the
oxide, which is more or less glass, no current flows from the
gate.

What’s New with TUUG (or is it MUUG???)
By Susan Zuk, President

PRESIDENT’S CORNER

This “glass” is only 0.025µm thick, and a static jolt can
have a voltage of 1000V, so the electric field is around forty
billion volts per metre — much worse than a lightening bolt
hitting window glass. What happens is that an ionized path
(an electrical hole) is punched through the oxide, and the
gate is no longer insulated from the semiconductor under-
neath.

Chip manufacturers use special circuitry to protect the
sensitive internal components of integrated circuits by
draining the static charge away before it gets to any gates.
While this protection is effective, there is a limit to the
amount of charge which can be handled. Here are a few
simple rules to follow when handling static-sensitive chips
and boards:
1) Don't remove a new board from it's protective envelope

until you're ready to use it.
2) Touch something metal, like the case of the computer,

before you touch anything inside the computer.
3) Don’t touch the pins of chips or the edge connectors on

a board. Handle everything by its edges.
4) Avoid opening your computer on cold, dry, winter days,

and beware of carpets and plastic-soled shoes.
5) If you do a lot of fooling with hardware, you might

consider acquiring an anti-static table mat and a
grounded wrist-strap. ✒

Roland Schneider is currently the TUUG Secretary.

123456789012345
123456789012345
123456789012345

semiconductorsource drain

gate
oxide

An Integrated MOS Transistor
(side view)

ROLAND’S HARDWARE CORNER

Static Electricity and Your Computer

Well, what has the UNIX Group been up to in the last
month? We had an excellent executive meeting last week
and discussed a number of exciting topics.

Our involvement at the Muddy Waters Computer Fest
will help us to promote our group and UNIX. This will be
one of our first promotions of the group to the Manitoba
community. We expect the group will continue to grow
with having a booth at this show.

UniForum affiliation is a very exciting step for our
group. We will now be able to work with other Canadian
UNIX groups to share ideas and information. I am looking
forward to meeting representatives from these other groups.
UniForum holds its yearly UNIX Show every spring. At
this event they also bring together the Presidents of all the
affiliates. This group is called the National Council. We
will be meeting at the end of May to discuss local and
national opportunities.

Locally we will be promoting UniForum Canada and
will be encouraging individual membership. Please stay
tuned for more information. The group has been very busy
trying to coordinate and set policy as to how to integrate
UniForum memberships with our own. If you really want

to join UniForum immediately please call me and I will
provide you with this information.

My final note is on the donation of a Sun workstation
from the University of Manitoba. We really appreciate the
University's commitment to and support for the group.
TUUG wishes to thank those that made this possible,
particularly Kathy Norman and Bill Reid.

We will be using the workstation to provide Internet
service for members. This service will start in the next
month or so. The service will be free until October if you
are a member. Please see the enclosed account application
form. We will probably be holding a tutorial to show you
how to use and set your system up to connect to the
workstation.

In the next while you will be seeing the group pro-
moted as both the Technical UNIX User Group as well as
the Manitoba UNIX User Group. We will still be known
officially as TUUG until the name search on the new name
has been completed, although we are already promoting
ourselves under the new name.

Finally, I would like to thank Amdahl for their presen-
tation last month on their flavour of UNIX called UTS. ✒

4

INDUSTRY

Across the Chasm of Incompatibility
To deliver on the potential of software that runs on multiple platforms, vendors strive to port applications.

By Stephen Lawton
Reprinted with permission from the March 1992 issue of UniForum Monthly, published by UniForum.

As UNIX-based options show alternate routes for today’s
computing, users are finding some impasses on the road to
open systems. One of the widest is the portability of applica-
tion programs. Depending on how code originally was
written, the task to port a program from one version of UNIX
to another can range from straightforward to complex. And
porting from MS-DOS or another single-user operating
system to UNIX means bridging a wide gulf.

Ken Hobday, software engineering manager in the
CASE group at DEC in Nashua, NH, defines portability as
“the ability to move applications from one system to another
at a reasonable cost.” He emphasizes that no platform has
100 percent portable software – not even DOS, which many
users site as a paragon of portability. In the DOS world,
developers must be concerned, for example, with the type of
monitor being used, such as EGA, VGA or Super VGA, and
whether the program is run from a command line or under
the graphical environment Windows. They also must
consider which version of DOS they are using.

Users, Hobday asserts, are concerned most about
interoperability, which includes passing data from programs
running on one platform to other applications running on
dissimilar platforms. Although it is important to leverage
their previous investments in training when it comes to
learning new programs on different platforms, users want
even more to be able to work with data they already have. A
ported database, for example, must be able to access the
existing database files, as well as files on other systems. In
such a case, it might be necessary to transfer statistical data
from a UNIX workstation in manufacturing to a DOS PC in
marketing and a proprietary minicomputer in accounting.

Systems manufacturers and independent software
vendors (ISVs) must cooperate to build bridges for true
portability. Unfortunately, they often start from opposite
ends of the project.

Where The Work Is
Relational database vendor Informix Software of Menlo
Park, CA, offers its products on a variety of UNIX platforms,
as well as DOS and OS/2. The company develops software
on Sun workstations, then tests it on what Gilbert Wai,
product marketing vice president, calls “acceptance plat-
forms”: workstations from Sun and Hewlett-Packard and a
third system that is chosen depending on the target UNIX
version and hardware.

Software designed on a UNIX platform for UNIX
systems is relatively easy to port, Wai says. Although UNIX
versions treat some programming components differently –
such as the location of the most and least significant bits in a
byte – the amount of code rewriting during a port is small.

The bulk of the ISV’s effort comes in testing the revised
software. “Ninety percent of the time required to complete

the port is testing and validation,” Wai says. Paul Wensley,
engineering vice president for Island Graphics Corp., a word
processing and graphics software vendor in San Rafael, CA,
agrees. He says that a working version of a port based on the
Motif or Open Look graphical user interface (GUI) can be
ready within days but testing the program takes a great
amount of time.

The next most demanding task in porting is rewriting
documentation for the new platform. “The operating system
documentation doesn’t always tell you what you need to
know,” says Jack Gold, marketing vice president for imaging
software vendor PCS Systems of Northborough, MA. Other
factors in the effort to recast documentation are largely
logistical: making sure that all the features in the original
documentation are listed in the new documentation and that
they are described in a way that will make sense to users of
the new target platform. Editing and proofreading the text,
and printing it, also take time. Some vendors are choosing to
publish documentation on CD-ROM so all such work can be
done on line without paper.

Nuts And Bolts
According to Hobday, DEC generally approves porting
projects that take up to one man-year (say, two engineers
working for six months) to complete. Many ISVs, however,
cannot afford to expend so much effort; often they measure
the time for porting, debugging and verification in weeks
rather than months.

Hobday estimates that some 80 percent of the code
should require no changes in a port; only 15 to 20 percent of
the machine-dependent code – the user interface, operating
system interface and a small amount of other machine-
specific code – must be modified. Even so, he says, “The
finished product needs to be able to exploit the capabilities
of the new system.”

Wensley recommends that programs have an “auto-
detect feature” that can determine the types of host platform
on which they run. Island’s auto-detect mechanism uses a
standard X Library call that requests vendor-specific
information such as the vendor ID, the version number and
what company built the hardware. Using this information,
the program identifies the host platform and optimizes itself
for it, avoiding potential bottlenecks associated with some
UNIX versions.

Wensley cites three key issues in deciding whether to
undertake a port. Two are traditional marketing and sales
considerations that apply to any new product: How many
systems using that particular version of UNIX are in the field
and how many units must the vendor sell to recover its
investment?

The other consideration is technical and requires that the
ISV understand the target platform’s specifications. Among

5

the issues here are CPU speed, amount of system RAM,
number of colors the graphics card and monitor can display,
monitor resolution, types of input devices (such as mice) to
be used and number of frame buffers. Once these issues are
resolved, he says, doing the actual work on the port is
straightforward.

Building Graphically
Generally speaking, application software includes, as well as
the program itself, a user interface and an operating system
interface. In DOS code it is common for user interface-
dependent commands – whether character-based or graphical
– to be woven throughout a program. Much of this user
interface code describes how information is to be displayed.
Being dispersed, it is not easily isolated and modified.

For UNIX GUIs, most of that information is contained
in Motif or Open Look modules. Software developers can
write code that is portable across versions of UNIX by
keeping much of the GUI code in a discrete module. As the
GUI is upgraded over the years, only that module has to be
altered. Both Motif and Open Look are based on the X
Window System, which was developed at the Massachusetts
Institute of Technology in Cambridge, MA, to allow data on
one compliant system to be displayed on others.

But various platforms have different performance
characteristics. Because X provides the ability to show data
on a platform that is different from the system on which the
data was created, X itself must be generic. It is not optimized
to take advantage of a particular platform’s benefits or
overcome its performance handicaps.

Crossing The Canyon
The vast majority of UNIX code is written in the C language,
which was designed to be highly portable. A key component
of moving a program from one UNIX version to another is
tuning, the act of data collection, analysis and implementa-
tion to improve performance. It is significant because each
platform looks at code a bit differently. Silicon Graphics
computers, for example, expect a file format that is different
from that of other hardware systems. File filters must be
utilized so the operating system can recognize the data.

Similarly, window management differs in Open Look
and Motif. Although Island Graphics uses standard UNIX
tools, such as make and shell scripts, to port its programs,
programmers still must write some machine-specific code.
Both Island and PCS Systems base their applications on
Motif and rewrite from scratch the presentation portion of a
program when porting to a non-Motif-based UNIX.

PCS also makes use of callable routines in the operating
system to reduce the amount of rewriting for revisions. When
companies introduce new versions of an operating system,
they generally provide backward compatibility for such
callable routines. Using the operating system routines assures
ISVs that their program will be compatible with later
versions of the operating system.

DOS Plus And Minus
UNIX-based hardware vendors should take their lead from
PC makers, Wensley advises. In the PC market, software
suppliers know that all the hardware works alike. Hardware

vendors add value by offering faster processing or optional
boards that deliver additional features. In the UNIX world,
one computer running UNIX System V with Motif might not
be code-compatible with another because, although the
operating system is the same, the CPUs come from different
manufacturers, which necessitates recompiling the program.
(For more on this issue, see “ABIs In Theory And Practice.”)

Yet DOS systems tend to avoid some issues that UNIX
developers must tackle. In particular, scalability becomes
important when porting software from the DOS world to
UNIX. Most PC-based software is designed for single-user
platforms. UNIX-based workstations and servers, as well as
midrange and mainframe systems, are designed for
multiuser, multitasking environments. Porting software from
one multiuser platform to another generally is easier than
porting from a single-user platform because the original code
already addresses multitasking issues. PC software may
require extensive rewriting for use in a multiuser environ-
ment. For that reason, many companies port only local-area
network versions of PC software to UNIX.

In addition to the single- and multiuser issue, Hobday
says developers should anticipate what else their users will
expect of the software. Do they want concurrency when
executing commands? How large a data file do they expect
to manipulate? The answers to these questions more clearly
define if, as well as how, a port should be made.

“Some UNIX databases work exceptionally well when
the directories are in main memory,” he says. Performance
drops off considerably when the database directory is not
stored in memory. Similarly, small databases may perform
well when they store tens of megabytes of data. When the
user has hundreds of megabytes of files, those databases
become too slow. What’s more, users may have different
expectations of levels of support. A developer must try to
predict how much demand for technical support a product
will incur on a new platform.

Porting Specialists
Some ISVs, rather than porting software themselves, license
their applications to other companies that do the port and sell
the software in the new market. Two such companies that
port to UNIX environments are UniPress Software of
Edison, NJ, and Hunter Systems of Palo Alto, CA. They take
substantially different approaches.

Hunter Systems’ strategy is to license DOS software,
port it to run on UNIX and act as a reseller. Portable soft-
ware is a compromise, says Colin Hunter, president and
founder of Hunter Systems, between software that can really
be created rapidly and software that can be moved easily
between platforms. Today, according to him, most software
developers write for the lowest common denominator in C to
make their code portable. By doing so, they may not take full
advantage of any platform. “The result is a cross-section
rather than a program with a good look for a target market,”
he says.

Hunter Systems’ XDOS porting tools work at the binary
level with the hardware interface and device driver interface.
The toolkit takes in code, decompiles it and creates an

INDUSTRY

6

intermediate representation, which then is compiled and
optimized for the new platform. A run-time library handles
the operating system-specific calls.

XDOS creates an application programming interface
(API) that is consistent across UNIX platforms, the company
claims. By being so, an application can run on various
systems that have an XDOS Transformer, which links
system-specific code to the API.

UniPress has a different strategy. It sells the XView
Toolkit for writing X applications that run on Sun systems to
ISVs who develop and sell their own programs. The toolkit
converts SunView or XView applications to run on UNIX
systems from DEC, Hewlett-Packard, IBM, Silicon Graphics
and Sony.

Mark Krieger, UniPress president, advocates program-
ming in C++, which creates object-oriented code. In conven-
tional C, it is necessary to know how bits are defined in a
byte and bytes defined in a word, bit masking and other
technical issues. Therefore, code written in C is less portable
than C++ code if the user does not have considerable
knowledge of the target version of UNIX and its idiosyncra-
sies, Krieger says.

Even the UNIX make utility is not necessarily standard,
he says. Using different makes under different versions of
UNIX might not create the same result. Some machine-
specific “bells and whistles” might make the code not
directly portable.

UniPress’ method is first to take the software in its
original iteration and run it against standardized tests whose
results provide a performance base against which the ported
software is tested. The next step is running the program
through XView Toolkit and creating new code. The new
code is compiled, after which an engineer inspects it and
fixes any errors or warnings. Then the code is tested again
and new results are compared against the originals.

Building Better Bridges
ISVs generally agree that porting software from one version
of UNIX to another is getting easier. There is general
consensus that C++ is a stronger programming language for
portability than C. And despite the time and expense, porting
is still the only way today for developers to be on all UNIX
systems.

Rewriting for each platform simply is not realistic, from
a price or time-to-market perspective. So ISVs face a
difficult decision: port their software themselves or license it
to a third party, which then will be responsible for the
porting.

Users remain at the mercy of such decisions. Whether a
program will be available for many versions of UNIX
depends on the developer’s strategic plans and resources.
Either way, the user generally ends up paying for the cost of
the port in the form of higher purchase or maintenance
prices. Users who demand software on multiple platforms
and the most popular versions of UNIX must expect to pay
for it.

Although developers are unwilling to reveal exactly how
much it costs to port a program, we can specify some of the
basic costs: approximately six months of engineering time
for code rewriting and quality assurance; at least two months
for documentation modifications and printing; plus market-
ing and administrative overhead. The accumulated cost can
translate into hundreds or even thousands of dollars for each
customer, based on the platform and number of copies sold.

Nevertheless, ISVs promise more programs ported to
different versions of UNIX. Despite the costs, many of them
see porting as a part of their commitment to customer service
– as long as they can still make sufficient profit. ✒

Stephen Lawton, a free-lance writer based in San Bruno, CA,
has covered the computer industry for more than 13 years.

INDUSTRY

UNIX BITS

Special Files
How does the UNIX kernel know that the file named
“ /dev/ttya ” refers to a serial port, and that “/dev/rst0 ” is a
tape drive and not a plain disk file? Unlike MS-DOS, it has
nothing to do with the name. These are special files, created
with the mknod utility. Instead of storing data, they have a
flag indicating they’re character (e.g. serial port) or block
(e.g. disk) special files, and major & minor device numbers.

The major device number is an index into an array of
structures of function pointers compiled into the UNIX
kernel. The kernel calls the appropriate function for the
device in question in response to a system call. For example,
the /dev/rst0 (tape drive) major device number is 18 on my
computer. (You can find the major and minor device
numbers with ls -l) Entry 18 in the kernel table cdevsw
contains points to a structure containing the functions
stopen() , stclose() , stread() , stwrite() , and stioctl() ,
which control a SCSI tape drive.

But what if there is more than one tape drive of the same
type? That’s what the minor device number is for. /dev/rst0

has minor device number 0, rst1 has minor device number
1, and so on. The interpretation of the minor device number
is left to the device driver functions, which have to decide
which physical device is being referred to.

The minor device numbers are good for more than
selecting the appropriate device. For example, although
/dev/rst0 and /dev/nrst0 refer to the same device, nrst0
has minor device number 4, (bit #2 is set) which indicates to
the driver that the tape should not be rewound when it is
closed. Other bits may indicate what tape density to use, etc.

For serial ports, on Sun systems anyway, setting bit 7
(value 128) of a /dev/tty?? minor device number tells the
driver to allow the serial port to be opened even if the
modem connected to it indicates that there is no carrier
present. These new devices are traditionally named
/dev/cu?? because they are used for outgoing calls. (cu
stands for “call up”) ✒

Roland Schneider is currently the TUUG secretary.

7

HANDS-ON

More and more Unix programmers are finding themselves
writing multi-process software. In many cases this is to take
advantage of a networked environment and therefore the
code makes use of facilities such as “sockets” (BSD Unix),
“TLI” (System V Unix), and “R.P.C.” (Remote Procedure
Calls) to accomplish the necessary inter-process communica-
tion. It is, of course, possible to have multi-process software
which runs on a single computer. When this is the case, a
programmer can make use the above facilities (e.g. Unix-
domain sockets) but other possibilities also exist. Among
these are the old faithful “pipes”, “fifos” (essentially named
pipes), and, under many versions of Unix, shared memory.

With the advent of affordable multiprocessor technology
(from companies including Sun Microsystems, Silicon
Graphics, and Unisys), the importance of shared memory as
a medium for inter-process communication has increased.

Efficiency is a prime consideration when developing
parallel algorithms which use multiple processes to solve a
single problem and shared memory is by far the most
efficient mechanism available. As an additional benefit it
also offers familiarity to many programmers who have not
had exposure to network-based communications facilities.

The importance of shared memory will likely continue
as computers with more and more processors become
available. For example, at Stanford University in California,
John Hennessy (one of the “inventors” of RISC) and his
group have developed the DASH multiprocessor, the
prototype of which is comprised of up to 64 RISC processors
all accessing the same memory and all running Unix.
Furthermore, DASH was explicitly designed to efficiently
scale up to several thousand processors.

Using shared memory, multiple processes can construct
shared data structures in an area of memory which they can
all access. If you are familiar with the message passing
paradigm, you can think of a message queue being built in
memory with client processes placing messages into the
queue and a server process removing them. In general
though, it is better to consider the processes to be sharing a
data structure since this is more typical of a parallel program.
As an example, one application might have several processes
concurrently analyzing an image which is stored in shared
memory. After a little bit of setup, the data in shared memory
can be accessed in the same way as any other data in the
program.

There is one small “wrench in the works” though. In our
suggested application, each process merely “analyzes” the
image or, perhaps, a part of it. If we have a multiprocessor
machine then a number (possibly all) of these processes may
run concurrently giving us our performance improvement.
But what happens if rather than analyzing (reading) the data,
one or more processes are actually modifying (writing) it?
Somehow we must provide “synchronization” between the

processes so that they don’t interfere with one another. (e.g.
We might want to ensure that one process doesn’t read the
image data before another process has changed it in some
way.) Thus, although we access shared memory variables
just like any others, we must be careful about when we
access them. The programmer must provide explicit synchro-
nization control by coding “semaphore” calls. With message
passing and R.P.C. the synchronization is effectively builtin.
Having to deal with synchronization is the price you pay for
the generality and efficiency of using shared memory.

We will begin by looking only at Unix’s shared memory
facilities and ignore the question of synchronization until
later. A brief example which only reads from shared memory
will be presented to illustrate the use of the shared memory
system calls.

To begin with, since the processes which may want to
access a “segment” of shared memory may not be related
(e.g. child and parent), each shared memory segment needs a
name. This “name” (actually just a unique identifier) is
constructed in a rather odd way using the ‘ftok()’ function
which is a part of the System V standard C library. The
function maps a pathname and a single character to a unique
“key” (our “name”). This key is then used in creating or
opening a shared memory segment. It is, of course, assumed
that all processes wishing to share a segment of memory
have agreed upon a pathname and character to use a-priori.

Armed with a key, we can use the ‘shmget()’ system call
to “get” a shared memory segment. This call accepts the key
value returned by ‘ftok()’, a size for the segment (in bytes),
and an integer flag argument. Without getting into too much
detail (that’s what man pages are for ;->) the flag specifies
certain characteristics of the shared segment including the
types of access you require to it (i.e. read, write, ...). In most
cases, if the segment does not already exist, it will be created
and in either case, an integer “shared memory identifier”
(much like a file or socket identifier) will be returned.

At this stage, the shared memory segment has been
created but it is still inaccessible. You must attach (or
“map”) the segment into your address space in order to make
it accessible to your process. This is done using the ‘shmat()’
system call. You give ‘shmat()’ the segment identifier and
some other information and it will return an address (‘char
*’) which is where the segment starts in your address space
(i.e. it returns a pointer to the segment). You can now freely
access data in the segment using the pointer just as you
would any other dynamically allocated data object.

When you are finished with the shared memory seg-
ment, you can call ‘shmdt()’ to detach the segment. This
does not destroy the segment (since other processes may still
be using it) but merely “unmaps” it from your address space.
The final process, when finished with the segment, may
detach and then actually remove it from the system. The final

Using Shared Memory for Inter-Process Communication
Part 1 of 3

By Peter Graham

8

HANDS-ON
removal is accomplished using a shared memory control
operation which is performed via the ‘shmctl()’ system call.

In the following (contrived) example, there is a header
file ‘sv.h’ which contains the type definitions for a “shared
vector.” The process running the code in ‘init.c’ creates and
initializes the shared memory segment containing a shared
vector of 10000 integers. It then sleeps for 60 seconds
allowing us time to run ten processes which each read some
data in the shared vector without fears of synchronization
problems. Finally, it removes the shared segment long after
the other processes are done with it. The program ‘forker.c’
is used to create the ten processes which will access the
shared vector data. It simply forks ten time to create ten
processes each of which executes the code in ‘sum.c’. When
a process running ‘sum.c’ executes, it receives a “process
number” (not a pid) in the range 0 to 9 as its only argument.
This is provided by ‘forker.c’ and is used by each “sum”
process to determine which tenth of the array’s elements it
should sum. (e.g. Process number 4 sums elements 4000
through 4999.) Each process prints its result and then exits
after detaching from the shared segment.

Here is some sample output from running on a SPARC-
station. Notice that we run the init program in the back-
ground so we can start forker once it has finished the shared
vector initialization. The order of the output statements from

the sum processes is dependent upon the scheduling order of
the processes. As can be seen in ‘init.c,’ the vector was
initialized in such a way as to produce the easy to verify
results. :-)

% init &
[1] 15021
Shared Vector is initialized, sleeping for 1
minute.
% forker
Process number 3 calculates the sum 3000.
Process number 4 calculates the sum 4000.
Process number 2 calculates the sum 2000.
Process number 7 calculates the sum 7000.
Process number 9 calculates the sum 9000.
Process number 8 calculates the sum 8000.
Process number 0 calculates the sum 0.
Process number 1 calculates the sum 1000.
Process number 6 calculates the sum 6000.
Process number 5 calculates the sum 5000.
[1] Exit 1 init
%
Next time we will get into the details of doing process

synchronization using semaphores so that we can do useful
things with shared memory. ✒
Peter Graham is a PhD student in Computer Science.

/********/
/* sv.h */
/********/

typedef struct sv {
int elts[10000];

} SV, *SVPTR;

/**********/
/* init.c */
/**********/

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "sv.h"

#ifdef sun
/* necessary because of problem with */
/* SunOS include file shm.h */
#define SHM_W 0200 /* shm write permission */
#define SHM_R 0400 /* shm read permission */
#endif

main()
{

int i; /* simple counter */
key_t sv_shmkey; /* key to shm segment */
int sv_segid; /* shm segment ID */
SVPTR sv_segaddr; /* ptr to mapped seg */
/* need for call to 'shmctl()' */
struct shmid_ds *sv_shmbufptr;

/* This code creates the shared memory */
/* segment and initializes it. */

/* Setup to access shared memory vector by*/
/* creating a unique key/name for it ... */
if ((sv_shmkey=ftok(
 "/home/cs/staff/pgraham/misc/tuug/forker.c",

'M'))==-1) {
printf(

 "Couldn't create shared memory key.\n");
exit(-1);

}

/* calling shmget to create it */
/* (Note: IPC_CREAT)... */
if ((sv_segid=shmget(sv_shmkey,sizeof(SV),

IPC_CREAT|SHM_R|SHM_W))==-1) {
printf(

"Couldn't get the shared memory segment.\n");
exit(-1);

}

/* ... and mapping it into address space */
/* at address returned in 'sv_segaddr'. */
if ((sv_segaddr=(SVPTR)

shmat(sv_segid,(char *)0,0))
==(SVPTR) (-1)) {

printf(
 "Couldn't attach shared memory segment.\n");

exit(-1);
}

/* Do the initialization! */
/* The first 1000 elts will contain 0, */
/* the next 1000 will contain 1, */
/* the next 1000 will contain 2, & so on. */
for (i=0;i<10000;i++) {

sv_segaddr->elts[i]=(i/1000);
}

9

printf("Shared vector is initialized, ");
printf("sleeping for 1 minute.\n");
/* allow time to run summing processes */
sleep(60);

/* detach the shared memory segment */
if (shmdt((char *) sv_segaddr)==-1) {

printf(
"Couldn't detach shared filename buffer.\n");
}

/* now remove shared segment altogether */
if (shmctl(sv_segid,IPC_RMID,sv_shmbufptr)

==-1) {
printf(

 "Couldn't remove shared record buffer.\n");
}

}

/************/
/* forker.c */
/************/

main()
{

int i, /* simple counter */
pid; /* forked process' pid */

/* space for character form of pid */
char argstr[16];

/* This code simply creates ten identical */
/* processes to run the program 'sum.c' */
/* which sums 1000 elts of the array. */
/* Each process is passed its process # */
/* (not pid) so that it knows what part */
/* of the array to operate on. */
for (i=0;i<10;i++) {

pid=fork(); /* fork a new process */
if (pid==0) {

/* we are child process so... */
/* format our process number */
sprintf(argstr,"%d",i);
/* execute the sum program */
/* passing it the process # */
execl(

"/home/cs/staff/pgraham/misc/tuug/sum",
"sum", argstr,(char *)0);

}
}

} /* end main */

/*********/
/* sum.c */
/*********/

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "sv.h"
#ifdef sun
/* necessary because of problem with */
/* SunOS include file shm.h */
#define SHM_W 0200 /* shm write permission */
#define SHM_R 0400 /* shm read permission */
#endif

main(argc,argv)
int argc;
char *argv[];
{

/* process number received as an argument */
int myprocessnum,

i, /* simple counter */
sum; /* the sum accumulated */

key_t sv_shmkey; /* key to shm segment */
int sv_segid; /* shm segment ID */
SVPTR sv_segaddr; /* ptr to mapped seg */

/* This code simply sums up the 1000 */
/* elements in the shared memory */
/* array specified by 'myprocessnum'. */

/* Setup to access shared memory vector by*/
/* creating a unique key/name for it ... */
if ((sv_shmkey=ftok(
 "/home/cs/staff/pgraham/misc/tuug/forker.c",

'M'))==-1) {
printf(

 "Couldn't create shared memory key.\n");
exit(-1);

}

/* ... calling shmget to "open" it - */
/* it's already been created ... */
if ((sv_segid=shmget(sv_shmkey,sizeof(SV),

SHM_R|SHM_W))==-1) {
printf(

"Couldn't get the shared memory segment.\n");
exit(-1);

}

/* ... and mapping it into address space */
/* at address returned in 'sv_segaddr'. */
if ((sv_segaddr=(SVPTR)

shmat(sv_segid,(char *)0,0))
==(SVPTR) (-1)) {

printf(
 "Couldn't attach shared memory segment.\n");

exit(-1);
}

/* extract process # from first argument */
sscanf(argv[1],"%d",&myprocessnum);

/* lets do the summing */
sum=0;
for (i=myprocessnum*1000;

i<(myprocessnum+1)*1000;i++) {
sum=sum+sv_segaddr->elts[i];

}
printf(
"Process number %d calculates the sum %d.\n",

myprocessnum,sum);

/* detach the shared memory segment */
if (shmdt((char *) sv_segaddr)==-1) {

printf(
"Couldn't detach shared filename buffer.\n");
}

}

HANDS-ON

10

TECHNOLOGY

Alpha Architecture Technical Summary
Dick Sites, Rich Witek

Reprinted from a Digital press release. [Note: “Alpha” is an internal code name. An official name will be announced soon.]

What Is Alpha?
Alpha is a 64-bit RISC architecture, designed with particular
emphasis on speed, multiple instruction issue, multiple
processors, software migration from VAX VMS and MIPS
ULTRIX, and long lifetime. The architects rejected any
feature that did not appear to be usable for at least 25 years.

The first chip implementation runs at up to 200 MHz.
The speed of Alpha implementations is expected to scale up
from this by at least a factor of 1000 over the next 25 years.

Data Formats
Alpha is a load/store RISC architecture with all operations
done between registers. Alpha has 32 integer registers and 32
floating registers, each 64 bits. Integer register R31 and
floating register F31 are always zero. Longword (32-bit) and
quadword (64-bit) integers are supported. Four floating
datatypes are supported: VAX F-float, VAX G-float, IEEE
single (32-bit), and IEEE double (64-bit). Memory is
accessed via 64-bit virtual little-endian byte addresses.

Instruction Formats
Alpha instructions are all 32 bits, in four different instruction
formats specifying 0, 1, 2, or 3 register fields. All formats
have a 6-bit opcode.

 OP number PALcall

 OP RA disp Branch

 OP RA RB disp Memory

 OP RA RB func. RC Operate

PALcalls specify one of a few dozen complex operations to
be performed.

Conditional branches test register RA and specify a
signed 21-bit PC-relative longword target displacement.
Subroutine calls put the return address in RA.

Loads and stores move longwords or quadwords
between RA and memory, using RB plus a signed 16-bit
displacement as the memory address.

Operates use source registers RA and RB, writing result
register RC. There is an extended opcode in the 11-bit
function field. Integer operates can use the RB field and part
of the function field to specify an 8-bit zero-extended literal.

PALcall Instructions
The Privileged Architecture Library call instructions specify
one of a few dozen complex functions to be performed.
These functions deal with interrupts and exceptions, task
switching, virtual memory, and other complex operations
that must be done atomically. PALcall instructions vector to
a privileged library of software subroutines (using the same
Alpha instruction set) that implement an operating-system-
specific set of these complex operations.

Branch Instructions
Conditional branch instructions can test a register for
positive/negative or for zero/nonzero. They can also test
integer registers for even/odd. Unconditional branch instruc-
tions can write a return address into a register. There is also a
calculated jump instruction the branches to an arbitrary 64-
bit address in a register.

Load/Store Instructions
Load and store instructions can move either 32- or 64-bit
aligned quantities. The VAX floating-point load/store
instructions swap words to give a consistent register format
for floats. Memory addresses are flat 64-bit virtual addresses,
with no segmentation. A 32-bit integer datum is placed in a
register in a canonical form that makes 33 copies of the high
bit of the datum. A 32-bit floating datum is placed in a
register in a canonical form that extends the exponent by 3
bits and extends the fraction with 29 low-order zeros. 32-bit
operates preserve these canonical forms.

There are no 8- or 16-bit load/store instructions, but
there are facilities for doing byte manipulation in registers.

Alpha has no 32/64 mode bit or other such device.
Compilers, as directed by user declarations, can generate any
mixture of 32- and 64-bit operations.

Integer Operate Instructions
The integer operate instructions manipulate full 64-bit
values, and include the usual assortment of arithmetic,
compare, logical, and shift instructions. There are just three
32-bit integer operates: add, subtract, and multiply. These
differ from their 64-bit counterparts ONLY in overflow
detection and in producing 32-bit canonical results.

There is no integer divide instruction.
In addition to the operations found in conventional RISC

architectures, there are scaled add/subtract for quick sub-
script calculation, 128-bit multiply for division by a constant
and multiprecision arithmetic, conditional moves for
avoiding branches, and an extensive set of in-register byte
manipulation instructions for avoiding single-byte writes.

Rather then keeping a global state bit for integer
overflow trap enable, the enable is encoded in the function
field of each instruction. Thus, both ADDQ/V and ADDQ
opcodes exist for specifying 64-bit add with and without
overflow checking. This makes pipelined implementations
easier.

Floating-point Operate Instructions
The floating operate instructions include four complete sets
of VAX and IEEE arithmetic, plus conversions between float
and integer.

There is no floating square root instruction.
In addition to the operations found in conventional RISC

architectures, there are conditional moves for avoiding
branches, and merge sign/exponent instructions for simple
field manipulation.

11

TECHNOLOGY
Rather then keeping global state bits for arithmetic trap

enables and rounding mode, these enable and mode bits are
encoded in the function field of each instruction.

Significant Differences From
Conventional RISC Processors

First, Alpha is a true 64-bit architecture, with a minimal
number of 32-bit instructions. It is not a 32-bit architecture
that was later expanded to 64 bits.

Second, Alpha was designed to allow very high-speed
implementations. The instructions are very simple (no load-
four-registers-unaligned-and-check-for-bytes-of-zero). There
are no special registers that would prevent pipelining
multiple instances of the same operations (no MQ register
and no condition codes). The instructions interact with each
other ONLY by one instruction writing a register or memory,
and another one reading from the same place. This makes it
particularly easy to build implementations that issue multiple
instructions every CPU cycle. (The first implementation in
fact issues two instructions every cycle.) There are no
implementation-specific pipeline timing hazards, no load-
delay slots, and no branch-delay slots. These features would
make it difficult to maintain binary compatibility across
multiple implementations and difficult to maintain full speed
on multiple-issue implementations.

Alpha is unconventional in the approach to byte manipu-
lation. Single-byte stores found in conventional RISC
architectures force cache and memory implementations to
include byte shift-and-mask logic, and sequencer logic to
perform read-modify-write on memory words. This approach
is awkward to implement quickly, and tends to slow down
cache access to normal 32- or 64-bit aligned quantities. It
also makes it awkward to build a high-speed error-correcting
write-back cache, which is often needed to keep a very fast
RISC implementation busy. It also can make it difficult to
pipeline multiple byte operations.

Instead, the byte shifting and masking is done in Alpha
with normal 64-bit register-to-register instructions, crafted to
keep the sequences short.

Alpha is also unconventional in the approach to arithme-
tic traps. In contrast to conventional RISC architectures,
Alpha arithmetic traps (overflow, underflow, etc.) are
imprecise — they can be delivered an arbitrary number of
instructions after the instruction that triggered the trap, and
traps from many different instructions can be reported at
once. This makes implementations that use pipelining and
multiple issue substantially easier to build.

If precise arithmetic exceptions are desired, trap barrier
instructions can be explicitly inserted in the program to force
traps to be delivered at specific points.

Alpha is also unconventional in the approach to multi-
processor shared memory. As viewed from a second proces-
sor (including an I/O device), a sequence of reads and writes
issued by one processor may be arbitrarily reordered by an
implementation. This allows implementations to use multi-
bank caches, bypassed write buffers, write merging,
pipelined writes with retry on error, etc. If strict ordering
between two accesses must be maintained, memory barrier
instructions can be explicitly inserted in the program.

The basic multiprocessor interlocking primitive is a
RISC-style load_locked, modify, store_conditional sequence.
If the sequence runs without interrupt, exception, or an
interfering write from another processor, then the conditional
store succeeds. Otherwise, the store fails and the program
eventually must branch back and retry the sequence. This
style of interlocking scales well with very fast caches, and
makes Alpha an especially attractive architecture for
building multiple-processor systems.

Alpha includes a number of HINTS for implementa-
tions, all aimed at allowing higher speed. Calculated jumps
have a target hint that can allow much faster subroutine calls
and returns. There are prefetching hints for the memory
system that can allow much higher cache hit rates. There are
also granularity hints for the virtual-address mapping that
can allow much more effective use of translation lookaside
buffers for big contiguous structures.

Alpha includes a very flexible privileged library of
software for operating-system-specific operations, invoked
with PALcalls. This library allows Alpha to run full VMS
using one version of this software library that mirrors many
of the VAX operating-system features, and to run OSF/1
using a different version that mirrors many of the MIPS
operating-system features, and similarly for NT. Other
versions could be tailored for real-time, teaching, etc. The
PALcalls allow Alpha to run VMS with hardly more
hardware than a a conventional RISC machine has (the PAL
mode bit itself, plus 4 extra protection bits in each TB entry).
This library makes Alpha an especially attractive architecture
for multiple operating systems.

Finally, Alpha is not strongly biased toward only one or
two programming languages. It is an attractive architecture
for compiling at least a dozen different languages. ✒

Specifications (150MHz version).
Process Technology .75 micron CMOS
Cycle Time 150 MHz (6.6 ns)
Die Size 13.9mm x 16.8mm
Transistor Count 1.68 million
Package 431 pin PGA
Number of Signal Pins 291
Power Dissipation 23 W at 6.6 ns cycle
Power Supply 3.3 volts
Clocking Input 300 MHz differential
On-chip D-cache 8 Kbyte, physical, direct-mapped, write-through,

32-byte line, 32-byte fill
On-chip I-cache 8 Kbyte, physical, direct-mapped, 32-byte line, 32-

byte fill, 64 ASNs

On-chip DTB 32-entry; fully-associative; 8-Kbyte, 64-Kbyte,
256-Kbyte, 4-Mbyte page sizes

On-chip ITB 8-entry, fully associative, 8-Kbyte page plus 4-
entry, fully-associative, 4-Mbyte page

Floating Point Unit On-chip FPU supports both IEEE and VAX
floating point

Bus Separate data, address bus. 128-bit/64-bit data bus
Serial ROM Interface Allows the chip to directly access serial ROM
Virtual Address Size 64 bits checked; 43 bits implemented
Physical Address Size 34 bits implemented
Page Size 8 Kbytes
Issue Rate 2 instructions per cycle to A-box, E-box, or F-box
Integer Pipeline 7-stage pipeline
Floating Pipeline 10-stage pipeline

12

MEETINGS

Agenda
for

Tuesday, May 12, 1992, 7:30 PM
234B Engineering Bldg.
University of Manitoba

Ft. Garry Campus

1. Round Table 7:30

2. Business Meeting 8:00
a) President’s Report
b) Membership Secretary’s Report
c) Newsletter Editor’s Report
d) Treasurer’s Report
e) Meeting Coordinator’s Report
f) New Business

3. Break 8:20

5. Presented Topic 8:30
The Future of UNIX at Intel
Jon Coxworth, Architect Manager
Intel Corporation (Ottawa)
There have been large chip wars going on the
industry in the last while. One of the most contro-
versial has been the discussion of RISC vs CISC
technology. Jon will be discussing this topic as
well as where Intel sees the future and what the
company is doing to make it happen.

6. Adjourn 9:30

Note: Please try to arrive at the meeting between
7:15 and 7:30 pm. Thank You.

TUUG Meeting Minutes
Tuesday, April 14, 1992, 7:30 PM

Senate Chambers
245 Engineering Bldg.
University of Manitoba

Ft. Garry Campus

Chair: Susan Zuk
Attendance: 44

Business meeting:
a) President's Report

* the name of the group is being changed from
“Technical UNIX User Group” to “Manitoba
UNIX User Group.”

* we will be joining UniForum Canada
* membership renewals will be changed so that each

member has his/her own “year” in order to harmo-
nize membership renewal with UniForum.

* Manitoba Hydro on Taylor Av. will likely become
our new “home” since Hydro has a good meeting
room which we will be allowed to use.

* Eric Carsted is leaving for Houston. Kathy Norman
will take over his job as meeting coordinator for
the rest of the year.

b) Membership Report
* total membership is now 65.

c) Newsletter Report
* May issue deadline is April 17.
* Lots of articles coming in now.

d) New Business
* Muddy Waters Computer Society is having Com-

puter Fest at the Convention Centre on April 26.
We need volunteers to man the MUUG booth.

* University of Manitoba Computer services has
donated use of a Sun 386i to our group.
- this machine is connected to the Internet
- will be used to set up UUCP, e-mail, network

news, ftp, etc. for our members, available either
via UUCP or interactively.

- MUUG will have to provide disk space and is
responsible for all maintenance.

- usage policies, including fees, have not yet been
decided.

Presented topic:
Unix on a Mainframe – Amdahl’s UTS

Meeting:
Our June meeting is scheduled for Tuesday, June 2,
at 6:30 PM (a week and an hour earlier than usual).
This meeting will be the traditional TUUG June
BBQ. This year, Roland Schneider is hosting it at
his home in Selkirk. A map will be provided in next
month’s newsletter.

Newsletter:
We will likely continue with our Q&A column, and
RPC Programming by Scott Balneaves, next month.
We may also have part 2 on shared memory by Peter
Graham, and several “filler” articles by Roland
Schneider. Thanks again to all those who submitted
those great articles throughout the year.

Next Month

