
December 1996 Volume 9, Number 4

1

$2.50 MUUGlines
Special Christmas Event!
Free Stuff!
Yes, it’s time for MUUG’s annual Christmas extravaganza,
and this year we’re getting into the gift-giving excitement
early. Come to our meeting to be elegible to win fabulous
prizes! Attending members (applications will be accepteduntil
the draw!) will be entered in the draw for three great Linux
goodies: ApplixWare, an office suite valued at approximately
$400; the Linux Bible, 4th edition; and a one year free
subscription to the Linux Journal.

In addition, non-members as well as members will be
entered in the door prize draw. Among the items are the Linux
Internet Archive (an 8 CD set of a vast array of Linux software
and related documentation!) and the Linux Bible, 3rd edition.
The highlight of the evening (yes, there’s more!) will be a
demonstration of ApplixWare by Red Hat Software. Providing
the demo will be MUUG board member Arne Grimstrup.

Don’t miss the other Christmas program this month: An
Obfuscated C contest winner to put you in the festive spirit.
This must be seen to be believed. Find it at http://
www.muug.mb.ca.

Where To Go
Our fourth meeting of this year (and Christmas spectacular)
will be at IBM Canada’s offices in the TD Centre building at
the corner of Portage and Main. We’ll be meeting at the lobby
on the main floor, and Steve Moffat will take us up to the
meeting room just before the meeting starts.

This month’s meeting is on December 10th at 7:30 PM.
Please arrive a little early for the meeting, as it will take some
time for Steve to get people up to the meeting room.

Parking is available either in the parkade behind the TD
building (off Albert St.), or in the ground level lot just north of
the TD building. Entrance to the lot is from Albert Street,
behind the parkade. Either way, parking is $1.25 flat rate for
the evening.

PC WEEK: Up Periscope
Linux: Microsoft’s real competition?
October 7, 1996

Oh yeah, sure. A freeware operating system knocks off Win-
dows NT? If IBM, with all its might and 11 million OS/2 users,
can’t get more than a footnote in the record books, what chance
does Linux have? Admittedly, not much. Still, the Redmondians
could learn a thing or two from the Linux phenomenon.

Considering that in 1991 Linux was something between a
hobby and an intellectual exercise for Linus Torvalds, a
computer science student in Helsinki, Finland, Linux has made

enormous progress. When Torvalds started, he didn’t know
much about the X86 architecture, but he got up to speed
quickly, publishing his code on the Internet as he went. His
project captured the imaginations of programmers all over the
world, who pitched in with code, drivers, testing and documen-
tation. Today, only about half of the kernel is Torvalds’ code,
but he still is the guiding light for Linux development. He also
crafted the copyright and license agreement that allows free
distribution (although packagers can charge for their value
added and support).

The key to Linux’s development is that Torvalds was
utterly straightforward when he showed his code to the world
and admitted, “I don’t know what I’m doing.” As Torvalds said
in a recent interview, “No question about it. Without Net
access, the project would never have even gotten off the
ground.” Experts pitched in and created the best Unix for the
Intel platform, even while making it less machine-dependent
and more portable. “The SCSI drivers, the networking code
and the new floating-point emulator code are completely
written by others,” says Torvalds.

Can you imagine Microsoft, IBM or Sun doing that?
Neither can I, although Sun’s handling of Java debugging and
security issues comes close.

This spirit of cooperation has yielded some surprising
benefits for Linux users. Linux became the first server plat-
form with a workable defense for SYN attacks, the hacker’s
trick of tying up a server by sending a continuous barrage of
packets. Linux International (http://www.li.org) now serves
the needs of users and provide information and links to
software and support, and it has the backing of big (and small)
companies. Linux is rapidly becoming one of the most popular
Unix variants, especially on Web servers. It’s robust, fast and
capable. Recent compatibility enhancements let you simply
recompile most Unix programs for Linux.

Caldera has announced an application suite for Linux, and
forthcoming Java applications won’t care what platform is
running under them, so Linux is becoming more feasible for
the desktop, too.

Still, there remains the question of Linux’s goals. “I hate
to admit it,” Torvalds says, “but Linux development has never
had any real well-defined goals. ... Features have been added
when somebody has been interested enough to write the code
— and I’ve felt the result was worthy.”

If you venture into Linux land, you’ll have to learn how to
pronounce it. Most people say “LINE-ux;” Torvalds pro-
nounces his name “LEEN-oos” and pronounces his baby’s
name “LEEN-ux.” So you can one-up everybody and pro-
nounce it the way he does. It’s quite continental.
Bill Machrone is vice president of technology for Ziff-Davis
Publishing Co. He can be reached at bill_machrone@zd.com.
Copyright (c) 1996 Ziff-Davis Publishing Co. All rights re-
served.

Volume 9, Number 4 December 1996

2

UnixWorld Online: Review
No. 005
PowerBuilder for
Unix
By Raghuram Bala.

Questions regarding this article should
be directed to the author at rbala@i-
2000.com.

PowerBuilder from Powersoft owns
about 50% of the market in the client-
server tool market on Microsoft Win-
dows. It has gained mass appeal with an
easy-to-use scripting language, high
degree of object orientedness, tight da-
tabase integration, and support for team
development. Now Powersoft has re-
leased Unix and Macintosh versions of
its flagship product for cross-platform
development.

Will it draw converts in the Unix
arena? Who is Powersoft targeting? Who
competes with it and how does
PowerBuilder stack up? Answers to these
questions and more below...

PB’s Roots
The move to client-server computing
began in the late 1980s, and what started
as a trickle has turned into a flood with
the vast majority of corporations right
sizing their computer systems. The days
of proprietary systems were replaced by
open systems bearing industry standard
hardware and software. Among the cata-
lysts for this paradigm shift were cheaper
personal computers and workstations,
and increasingly computing power on
the desktop as a result of leaps in micro-
processor technology.

In the business computing arena,
the Windows operating system from
Microsoft captured the giant’s share of
the market leaving OS/2, DOS, Unix
and others to share among the spoils.
Graphical User Interfaces (GUIs) have
been around since the late 1970s result-
ing from pioneering research from
Xerox’s PARC Labs and eventually
gaining commercial appeal in the form
of Apple’s Macintosh line of comput-
ers. However, it was Microsoft that

implementations in corporate America
however, client-server has translated to
a GUI program that handles presenta-
tion and application logic “talking” to a
database server. This architecture is also
known as the “fat” client architecture.

This architecture has its weaknesses
on PC platforms, namely:

Scalability It is not very scalable
because the PC platforms were not as
powerful as say, the Unix workstations,
because their computing power was more
limited. In addition, PowerBuilder,
Delphi, Visual Basic, and SQLWindows
were tools that ran only on Microsoft
Windows. Robustness The Windows
environment as a whole was not very
robust and even till today does not ex-
hibit full pre-emptive multitasking (with
the exception of Windows NT). Perfor-
mance Because the GUI tools had to
deal not only with the presentation layer
but also the application logic, the front-
end performed tasks such as database
transaction management. This resulted
in poor performance, network bottle-
necks, and other maladies. Performance
boosts have been achieved to a certain
degree by use of stored procedures that
reside on databases. However, because
stored procedure languages are non-stan-
dard there is little appeal for them as
long-term strategic choices. Cross Plat-
form Development Because applica-
tion logic was embedded in the GUI
front-end, re-use of code by in-house
application development was nearly im-
possible when it came to cross-platform
application development.

N-Tier Client-Server
With two-tier client-server computing
hitting a performance and scalability
wall, many of the tool vendors quickly
realized the need for scalability in their
products. This led to N-tier client-server
architectures where the application logic
is no longer bundled in with the presen-
tation layer, but instead is kept separate.
The communication between the pre-
sentation layer and application layer is
through remote procedure calls or mes-

helped bring GUIs to the masses aided
by low cost PCs bundled with the Win-
dows environment.

The native language of Windows is
the Windows API, and early develop-
ment on Windows was limited to C-
language programs with API calls. As
many discovered soon, it was an oner-
ous and arduous task to develop even
simple programs using this technique.
In addition, many corporate entities had
bigger needs like accessing large data-
bases from their desktops, creating re-
ports, sharing data between applications
and so on. Hence, the need arose for
industrial strength tools to mask the com-
plexity of the Windows API, and to
provide powerful mechanisms such as
tight integration with relational data-
bases, transaction management, and con-
figuration management for team devel-
opment. These were features that main-
frame users had come to expect and PCs
had to catch up or lose their appeal. A
wave of client-server tools on PCs
emerged in 1992 that included Visual
Basic from Microsoft, SQLWindows
from Gupta, and PowerBuilder from
Powersoft.

All these products use proprietary
scripting languages that are easy to learn
and have powerful capabilities suited
for programmers of business applica-
tions in enterprises.

Two-Tier Client-Server
In the last four years, PowerBuilder,
Visual Basic, and SQLWindows together
with new entrant Delphi from Borland
International have dominated the client-
server tools arena on Windows. In the
same period of time, many have discov-
ered the strengths and weaknesses of the
client-server architecture as a whole,
and likewise the limitations of the above
mentioned products. All of these tools
thrived in two-tier client-server archi-
tectures. In the purists’ viewpoint, cli-
ent-server refers to two pieces of soft-
ware, namely the client, which makes a
request that is handled by a another
piece of software on the server. In most

December 1996 Volume 9, Number 4

3

saging. This architecture has the advan-
tage that one could leverage the best
presentation tool without affecting the
application logic. A case in point would
be the sudden popularity of the World
Wide Web as a presentation layer. Com-
panies using the N-Tier architecture
could now use Web browsers as their
presentation layer and hook into exist-
ing application logic easily without major
reinvestment.

PB Strategy
Powersoft’s focus has always been on
corporations and the need to build cli-
ent-server applications rapidly with solid
database integration. It is not a tool
aimed at research laboratories, academic
institutions, or other sectors of the mar-
ket. That does not mean that it does not
have the capability to build non-data-
base applications.

With N-Tier client server gaining
immense popularity, Powersoft has at-
tacked the problem in two ways:

Going Cross-Platform This en-
ables PowerBuilder code modules to be
built in Windows 3.1, Windows 95, Win-
dows NT, MacOS, and Solaris 2.4. Code
Distribution and Objects With
PowerBuilder 5.0, one can now write
PowerBuilder code for the presentation
layer and also write the application logic
in PowerBuilder on the application
server. For example, a company could
deploy PCs for presentation and have
PowerBuilder run there, and deploy Sun
SPARCs with Solaris 2.4 as application
servers and have PowerBuilder on that
machine. PowerBuilder on the client
would call PowerBuilder objects on the
application server either through RPCs
or message-oriented mechanisms that
comply with CORBA standards.

With the Unix client-server market,
PowerBuilder faces off with Unify Vi-
sion from Unify Corporation, Progress
ADE from Progress, JAM from JYACC,
and Elements Environment from Neu-
ron Data. Although these tool vendors
have been around for a number of years,
they have not enjoyed the media cover-

age, popularity, and industry support
that PowerBuilder has garnered in the
last few years. This is not to say that their
products are inferior, but the market
usually follows the market leaders.

With Sybase acquiring Powersoft
in 1994, both companies benefited from
the strengths of the other. The Powersoft
acquisition made a Sybase a “complete”
client-server company providing client
application development tools as well as
back- end database server tools.
Powersoft, on the other hand, gained
Sybase’s marketing muscle, distribu-
tion channels, and a company that has a
solid reputation for technical excellence.
Also, on Unix platforms, Sybase’s data-
base products are extremely strong which
aids Powersoft’s move to Unix.

What about conventional X Toolkits
such as Xlib, Xintrinsics, Motif, and
others? When coding for sheer perfor-
mance, the X toolkits would definitely
beat PowerBuilder or any other similar
tool. However, in business applications,
development cycles tend to be short and
rapid application development with tight
database support is a must. In this sce-
nario, tools like PowerBuilder do very
well.

Powersoft’s approach on the Unix
platform is three-fold:

1.If any of their existing clients
wanted to migrate from PC clients to
Unix workstations, then PowerBuilder
for Unix would be the answer as its code
is almost fully compatible with the PC
version. The only minor changes are
commands relating to DDE, OLE, and
other features found only under Win-
dows. 2.If existing PowerBuilder users
had many client platforms, then all of
their development could be done using
PowerBuilder. This scenario occurs in
large corporations that have Unix work-
stations, PCs, and Macs. 3.Looking to
the future, N-Tier client server needs to
be supported. With Distributed
PowerBuilder, a feature in Version 5.0,
an enterprise can build stand-alone ob-
jects on application servers using
PowerBuilder. So existing clients can

migrate their application logic “stuck”
in two-tier architectures to an N-Tier
architecture without recoding in another
language, for instance, C or C++.

PB Architecture
PowerBuilder’s application archi-

tecture consists of seven classes:
Application Every application has

exactly one application class associated
with it. An application object is instanti-
ated during run time. The application
class has attributes such as the name of
the application, the fonts to use, the
libraries to use, and so on. Window The
window is the focal point in any GUI
application. Although, not absolutely
necessary for every application, most
GUI applications have at least have one
window. Microsoft Windows contain
controls such as static text, listboxes,
drop-down listboxes, checkboxes, ra-
dio buttons, and others. One unique con-
trol to PowerBuilder is the data window
that is a smart data-aware control with
links to databases. Every data-window
control is linked to a Datawindow class.
Data-window controls have a rich set of
methods for manipulating data. Menu
Menus are associated with windows and
cannot stand on their own right. Every
menu item can also be associated with a
toolbar bitmap. In this sense, developers
can get a toolbar for “free” as part of
menus. Datawindow This is a class that
is unique to PowerBuilder. Datawindows
are input-output mechanisms for data
stored in data sources. These data sources
could be flat files or databases, among
others. Datawindows have excellent
graphing capabilities based on data re-
trieved from data sources. Datawindows
have a number of presentation styles
including grid, tabular, freeform,
crosstab, and many more. Datawindow
controls in windows are associated with
a Datawindow class. Structure These
classes are similar to structures in the C
language and records in Pascal. Func-
tion These are global functions similar
to functions in any other language. They
can take arguments and can have return

Volume 9, Number 4 December 1996

4

values. User Objects User objects fol-
low the “parts” or “component” model
of programming where pre-fabricated
code modules can be easily plugged into
a window and used. There are many
types of user objects:

Class User Object These are non-
visual user objects that are akin to C++
classes with attributes and methods. C++
This allows code written in C++ to be
closely integrated with PowerBuilder.
Simple Visual User Objects These are
simple controls, such as radio buttons or
command buttons, that can be special-
ized and “componentized.” For example,
you can make a “close” button that can
be used in several windows. Complex
User Objects This is a whole set of
components that are “componentized.”
These complex user objects can also
have encapsulated methods and at-
tributes making them “objects.”

Object-Oriented Design
PowerBuilder supports object-oriented
programming by providing mechanisms
for encapsulation, inheritance, polymor-
phism, and dynamic binding:

Encapsulation Windows, menus,
user objects, and application classes sup-
port user-defined attribute and method
creation. There are shared attributes and
instance attributes. Shared attributes are
like static attributes in C++ classes where
the storage allocated for that attribute is
shared among all objects of that class.
Instance attributes are “regular” at-
tributes for which storage is allocated
separately for each instance of that class.
Methods can be created within win-
dows, menus, user objects, and applica-
tions. Both attributes and methods have
access- modifiers, such as private, pub-
lic, and protected similar to C++. Inher-
itance Class inheritance is supported for
windows, user objects, and menus. In-
heritance speeds up development by al-
lowing common traits among objects to
be preserved in an ancestor class and
specializations of the ancestor reserved
for descendants. Polymorphism In win-
dows, menus, and user objects, the meth-

and non-standard has drawbacks in terms
of performance and limiting its appeal
to a wider audience.

Conclusion
PowerBuilder for Unix is a solid prod-
uct and should capture a significant
market share on Unix for business appli-
cation development. Competition in the
Unix marketplace stacks up well against
PowerBuilder in technology. However,
the marketing muscle of Sybase and
Powersoft and the fact that
PowerBuilder’s ease of use, object-ori-
ented programming paradigm, and rapid
application development capabilities
would be hard to overcome.

Contact Information
To obtain more information on
PowerBuilder for Unix, you can con-
tact:
Powersoft Corporation 561 Virginia
Road Concord, MA, 01742-2727, USA
General Info: (508) 287-1500 Sales:
(800) 395-3525 Web site: http://
www.powersoft.com/
Copyright 1995, 1996 The McGraw-
Hill Companies, Inc. All Rights Reserved.
Edited by Becca Thomas, Online Editor,
UnixWorld Online, editor@unix-
world.com

Contact Information
To contact the MUUG board for mem-
bership information or anything else,
send e-mail to board@muug.mb.ca. We
have a Web presence as well, at http://
www.muug.mb.ca/, where you can find
all kinds of information, including de-
tails of upcoming and past meetings and
presentations and references related to
them.

To contact the newsletter editor (and
I know you want to shower him with
dozens of well-written article submis-
sions), e-mail editor@muug.mb.ca.

ods that are declared can be polymor-
phic. First, the descendant methods can
have different implementations than their
ancestors. Second, the methods in de-
scendants can override their ancestor
methods by taking different number and
types of parameters.

Function overloading is also sup-
ported in that more than one function
with the same name can exist within a
class. For example, we could have both:
void foo(char a)
int foo(int a, double b)

Dynamic Binding Also known as
late binding, dynamic binding enables
decisions like which method would be
called for an object during run time
instead of compile time.

Weaknesses of
PowerBuilder
One of the weaknesses of PowerBuilder
is that the development environment is
controlled by the tool. For example, if
you inherited Window B from Window
A, and later realize that you need to
inherit Window C from Window A and
Window B from Window C, there is no
simple way to accomplish this inherit-
ance. In a true object-oriented language,
such as C++, one would easily do this by
changing the source code. In
PowerBuilder, inheritance is achieved
via the development environment and
one actually does not directly interact
with the code that is generated. In addi-
tion, the code that is generated does not
have a published grammar. This pre-
vents one from building code generators
and conversion utilities to and from
PowerBuilder. For example, if you
wanted to convert a PowerBuilder screen
to an HTML Web Page there is no simple
method because there is no PowerBuilder
grammar whereas HTML is a published
standard.

Hence, rapid application develop-
ment without the ability to manipulate
the underlying code and development
environment directly has severe limita-
tions at times. The fact that Powerscript,
the language of PowerBuilder, is a 4GL

