
$2.50

June 1996

This Month's
Meeting
To celebrate the arrival of summer
temperatures (at last), the MUUG
regular meeting will be in the form of
a barbeque held at Assiniboine Park.
Join us at the south BBQ pits, adjacent
to the parking lot that's closest to the
Countess of Dufferin locomotive . As
there may not be sufficient picnic
tables for all of us, consider bringing
lawn chairs or blankets to sit on .

The barbeque will start at 6 :30, an
hour before our regular meeting time to
give us more time to soak up the warm
sunshine (rather optimistic of me, per-
haps!). The date is the usual second
Tuesday of the month, June 11 . If you
attend, bring your choice of
`barbequeable' - MUUG will provide
the soft drinks, condiments and other
trimmings including dessert!

Other Tidbits
This is the last meeting of the

MUUG `season', as we take a break for
the summer months . Our next meeting
will be Tuesday, September 10th . The
next issue of this newsletter will arrive
in your mailbox in advance of that, to
remind you and to let you know about all
the exciting programs planned for the
upcoming year.

The MUUG SIGs will also resume
in September, with the opening meeting
scheduled for the 17th. Stay tuned for
details on SIG presentations .

To contact the MUUG board for
membership information or anything
else, send email toboard@muug . mb . ca.
Don't forget, we have a home page too,
found at http://www .muug .mb.ca/,
where you can find all kinds of informa-
tion, including details of upcoming and
past meetings and presentations, and
references of interest related to them.

To contact the newsletter editor (and
I know that you want to shower him with
article submissions over the summer
months), email editor@ muug . mb . ca .

Have a great summer!

∎

Volume 8, Number 8

Form & Function - Using
Forms On the Web
Part 2 - CGI Programs
By Gilbert Detillieux, Computer Science, University of Manitoba

In the last part, we looked at how fill-out forms are coded in HTML . We also
looked at how the contents of forms are submitted by means of a MIME-format
message .

In this article we'll look at the Common Gateway Interface (CGI), which lets you
set up scripts to do server-side processing . Such scripts are usually the best way to
process form input.

HTTP Transactions
Before getting right into the details, it helps to understand how your web browser
(an HTTP client) talks to the HTTP server . HTTP transfers are based on transac-
tions. For each document to be fetched, the client looks at the URL, decides on
the protocol to use, the server to contact, and the document to fetch . The client
then opens a connection to the server, issues a request, and receives a reply . The
request will consist of a single command line, possibly followed by MIME-
format headers, a blank line, and possibly followed by an encoded message body .

In the simplest case, the request consists of a single GET command, followed by
a blank line :
GET /-gedeti/form/form .html HTTP/1 .0

The server's response has a similar structure : status line, MIME-format headers,
blank line, and message body . For a typical GET request, the server responds
with the requested document:
HTTP/1 .0 200 Document follows
Date: Mon, 25 Mar 1996 20 :32 :23 GMT
Server: NCSA/1 .5
Content-type: text/html
Last-modified: Mon, 25 Mar 1996 18:48 :57 GMT
Content-length: 1010

document content . . .

All of these transactions are normally transparent to the user, except when an
error occurs. However, when dealing with CGI programs, it's important to know
about the structure of transactions .

The Common Gateway Interface
Since an HTTP server only delivers static documents of various known types, it is
limited in the information it can provide . To make it capable of delivering other
types of information, particularly information that is obtained dynamically,
possibly based on user input, the server calls external programs . The Common
Gateway Interface (or CGI) was developed to allow such programs to communi-
cate with the server in a standard way .

The server still handles the communication with the client, but when a request
is received for a CGI program the server invokes the program and passes it the
information it needs . Since the server has already read in the client's command and
any MIME headers, this information is passed along via environment variables .

Continued on page 2

1

Volume 8, Number 8

The REQUEST-METHOD envi-
ronment variable will be set to either
GET or POST, depending on the method
used to submit the request . In the case of
a GET request, the QUERY STRING
variable will contain the URL-encoded
string that was submitted (which was
sent as part of the URL on the request. In
the case of a POST request,
CONTENT-TYPE and
CONTENT-LENGTH will contain the
values of the corresponding MIME head-
ers. CONTENTTYPE should be set to
"application/x-www-form-urlencoded"
for a normal form submission .
CONTENT-LENGTH will indicate how
many bytes of data must be read from
the standard input, in order to obtain the
URL-encoded form data .

So much for the input side . For
output, the CGI program is more in
control. The server will usually worry
about sending the initial status line, but
the CGI program must output the MIME
headers, a blank line, then a message
body. At the very least, a "Content-
type:" header must be sent, so that the
client will know what sort of message is
to follow . (The server doesn't know
what the CGI program will send as out-
put, so it's up to the program to say so
itself.) The message body can be a simple
text message, or a more elaborate docu-
ment, either pulled from a file or gener-
ated on the fly .

A Trivial Example
The following example, a UNIX shell
script, is about as simple as a CGI
program can get :
#!/bin/sh

Start with MIME-format message header
echo "Content-type : text/plain"
echo "

Process information, and output
message :
date

When the server calls this script, it
simply outputs the Content-type
header, and a blank line, then it
invokes the UNIX date command to

output a single line of text, containing
the system date.

As far as the HTTP transactions are
concerned, the request is the same as for
a normal document file, except that the
CGI program name is given :
GET/-gedetil/setupwww/cgi-bin/date .sh HTTP/1 .0

The server's reply will consist of a
few lines of its own, followed by the
CGI program's output, verbatim :
HTTP/1 .0 200 Document follows
Date: Mon, 25 Mar 1996 23:09:06 GMT
Server: NCSA/1 .5
Content-type : text/plain

Mon Mar 25 17 :09:06 CST 1996

If we wanted to pass input to the
script, we could have added it to the
GET request, by adding a string such
as "?query-string" on to the end of the
file name . Everything after the "?"
character would have been passed to
the script in the QUERY-STRING
environment variable .

Using the Querysh
Wrapper -
The tough part of handling input in
scripts, whether it's a simple query
string or the content of a complex
form, is decoding all of the URL-
encoded data . This is why such CGI
programs are often written in a
programming language like C or in a
scripting language like perl, both of
which provide the needed string
processing capabilities. However, we
can get by with simple UNIX shell
scripts if we leave the nitty-gritty job
of decoding the data to a simple
wrapper program, such as Querysh .

[http://www.cs.umanitoba.ca/~gedetil/
setupwww/querysh/]

Querysh will take care of determin-
ing whether a GET or POST method
was used, and the URL-encoded data
from the appropriate source, decode it,
split the fields, and set the value of each
field in an environment variable (which
is easy to process in a script) .

For example, given our earlier
sample form, the URL-encoded string

June 1996

would be something like this :
status=New&membnum=&fullname=Gilbert+
Detillieux&address=123+Mulberry+Lane
%0D%OAWinnipeg%2C+MB%0D%0A
R3R+3R3&phone=%28204%29+555-1212
&email=gedetil@ cs.umanitoba.ca

Querysh would decode this and set the
following variables for the script to
use :
QSH_FieIds="QSH_status
QSH_membnum QSH_fullname
QSH-address QSH-phone QSH-email"
QSH_status="New"
QSH_membnum=""
QSH_fullname="Gilbert Detillieux"
QSH-address-2123 Mulberry
Lane[CRLF] Winnipeg, MB[CRLF]R3R 3R3"
QSH_phone="(204) 555-1212"
QSH email="gedetil@cs.umanitoba.ca"

Here, "[CRLF]" is used to denote an
actual CR/LF pair of characters in the
string. With the form data in this
format, we're all set to write a script .

Processing the Sample
Form
Using querysh to do the grunt-work,
our CGI script takes on the following
basic structure :

#!/usr/local/etc/httpd/querysh#?/bin/sh

if [-z "$QSH_FieIds" 1
then

No form fields given - send
empty form

cat <<!
Content-type : text/html

. . . HTML for an empty form . . .
I

exit
fi

. . . process the form data . . .

cat <<I
Content-type : text/html

. . . HTML for a status message . . .

The first couple of lines are to let the
system know where to find querysh so
it can be run, and to let querysh know

F

June 1996

what shell it should then run to
interpret the rest of the script . The
next part of the script checks to see if
there are any fields that were set. (It's
possible that a blank form was
submitted or that the script was
invoked directly, without any form
data being passed.) In that case, a
sensible thing to do might be to
simply return an HTML document
containing a blank form to be filled
out.

The script then goes on to do some
processing based on the submitted data,
and finally it should output something
back to the client such as a document, a
status message or some output based on
the request .

Error Checking
It's important to remember that once
your CGI script is set up, it is acces-
sible by anyone on the web . The input
it receives may not even come from a
form you set up, but may have been
entered directly by someone else, or
using a modified form . For this
reason, it's important to carefully
check all input fields before using
them.

This is particularly important in shell
scripts, where this input may be passed
along to other commands, or interpreted
by the shell itself. A malicious user
could pass along input containing spe-
cial characters for the shell, and possibly
even commands to be run by this shell .
So, be careful how you use input data in
your script, and make sure you check all
fields thoroughly before you make use
of them.

Further Reading
Avery good description of the Com-

mon Gateway Interface can be found at
NCSA. [http://hoohoo.ncsa.uiuc .edu/
cgi/overview.html] Ian Graham's Intro-
duction to HTML also has a good de-
scription of CGIs . [http://
www .utirc.utoronto .ca/HTMLdocs/
NewHTML/serv-cgi-bin.html]

Doom on Linux
by Steve VanDevender <stevev@jcomm.uoregon.edu>

Last time, we left off the discussion of getting DOOM to run on Linux with
"Prerequisites and Installation". We carry on with sound and libraries :

If you want sound effects, you will need :

The Linux sound driver (Voxware) 2.90 or above (cat /dev/sndstat to find out
your version)

A 16-bit soundcard (such as the Sound Blaster 16, Pro Audio Spectrum 16, or
Gravis Ultrasound). You may be able to get your 8-bit soundcard to work with
the package doom_16to8bit_snd.tgz - see the section titled "I have an 8-bit
soundcard, how can I get sound?" .

Here's the output of ldd (which gives dynamic linking information for executables)
for linuxsdoom, linuxxoom and sndserver . If your shared libraries are older than
these versions and you're having problems, you may want to consider upgrading
them. Note that if you want to run the X version, you must have the X11R5
libX11 .so .3 .1 .0 available somewhere on your system, since X1 1R6 uses a different
major revision number for its shared libraries .

$ Idd linuxsdoom
l ibvga.so .1 (DLL Jump 1 .1 p18) => /usr/local/lib/libvga.so.1
l ibc.so.4 (DLL Jump 4.5p126) => /lib/libc .so.4 .5 .26
$ ldd linuxxdoom
libXtso.3 (DLL Jump 3.1) => /usr/X386/lib/libXt .so.3.1 .0
libX11 .so.3 (DLL Jump 3.1) => /usr/X386/lib/libX11 .so .3.1 .0

l ibc.so.4 (DLL Jump 4.5p126) => /lib/libc .so.4 .5.26
$ Idd sndserver
l ibm .so.4 (DLL Jump 4 .5p126) =>/lib/libm.so.4.5.26
Iibc.so .4 (DLL Jump 4.5p126) => /lib/libc .so.4 .5.26

Installation instructions
Obtain the file linux-doom-1.8 .tar .gz from the FTP site listed above . You can also
obtain the individual parts of the original distribution, but these instructions are
geared toward the complete package . If you have DOOM for MS-DOS, then you can
use doom1.wad from the shareware version, doom .wad from the registered version,
or doom2.wad from DOOM II .

First, extract linux-doom-1 .8 .tar.gz with the command

zcat linux-doom-1 .8 .tar.gz I tar xvf -

(it will extract its files into a new directory doom-1 .8). Do this as root so that the
correct permissions will be placed on the SVGAlib DOOM executable, or see
"Cannot get I/O permissions" below to find out how to set the permissions manually .
If you already have registered DOOM or DOOM II, and want to use the WAD files
that come with those, remove or rename doom1.wad and copy doom.wad or
doom2.wad into the doom-1 .8 directory .

Volume 8, Number 8

Continued on page 4

Volume 8, Number 8

If you want to use the SVGAlib
version of DOOM (I highly recommend
it), you will either need to have SVGAlib
1 .1 .8 or above, or install SVGAlib 1 .2.0
from the kit . If you are installing the kit
version, copy libvga.so .1 .2.0 to /usr/
local/lib, make sure /usr/local/lib is in /
etc/ld.so.conf, and run ldconfig to make
it available . Also copyREADME.config
to /usr/local/lib/libvga.config and edit it
to match your system's VGA card and
mouse settings. If you already have
SVGAlib and use a MouseSystems-type
mouse, you may want to install the kit
version or apply the patch given in the
README file to fix a problem with
SVGAlib handling of MouseSystems-
type mice.

If you don't want sound effects or
don't meet the prerequisites above for
sound hardware/drivers, remove or
rename the file "sndserver" .

When you're ready to try it out, change
to a text-mode virtual console and give
the command
sdoom -warp 1 1

If you want to play in X, get into X
and give the command
xdoom -warp 1 1

Make sure your mouse is in the "No
Name" window that DOOM comes up
in, or click on the window if yourwindow
manager uses click-to-focus input
focusing .

Press ESC to get the DOOM main
menu, if you want to select something
other than the default starting location
and difficulty level . Your mouse may
not work right away. See "Configuration,
Tweaks, and Tricks" for more
information about setting your mouse
type and customizing the keyboard and
mouse .

If you would like to install the binaries
in one directory and keep the doom* .wad
file in another, you can set the
DOOMWADDIR environment variable
to the name of the directory where you
are keeping doom* .wad so that
linux[xs]doom can find it . You can also
make a symbolic link to a copy of
doom*.wad in a mounted MS-DOS
filesystem if you don't want to duplicate

doom*.wad into a Linux filesystem
(although the game will start much faster
if doom*.wad is in an ext2 filesystem).
If you can't get DOOMWADDIR to
work, see the section titled
"DOOMWADDIR doesn't work as
advertised" below .
H. Peter Anvin <hpa@ahab.eecs

.nwu.edu> has written a shell script that
acts as a front-end for Linux DOOM as
part of a package including the DOOM
executables and the sndcvt program for
8-bit sound support . The package is
available by anonymous FTP from
eecs .nwu .edu in pub/linux/doom/
doom.tgz . The script installs into /usr/
local/bin and runs DOOM from /usr/
local/lib/doom .
Read the README.linux[xs] and

README.dos included in linux-doom-
1 .8 .tar .gz. They contain most of the
information here (in briefer form),
complete documentation of the game
commands and gameplay features, and
alsoexplain id's policy towards the Linux
port - it exists because "Linux gives
[David Taylor] a woody" and is not
officially supported by id. Linux DOOM
does not support all MS-DOS doom
features (notably music and modem or
IPX network play) and probably never
will.

Problems and solutions

Most of the headers in this section contain
key words from an error message output
by DOOM when something doesn't
work .

Cannot get I/O permissions (SVGA)

SVGAlib applications must run as root
or setuid to root in order to obtain
permission to write to the VGA 1/O
registers. Run SVGA DOOM as root, or
say "chown root linuxsdoom ; chomd
4755 linuxsdoom" to make SVGA
DOOM setuid to root so it can be run by
non-root users .

DISPLAY=(null) (X)

June 1996

This means you are trying to run X
DOOM without X. You need to start
your X server before you can start X
DOOM. If you try to set the environment
variable DISPLAY without having an X
server running, or the variable is set
wrongly, then instead you'll probably
get a message containing "Cannot
connect to server" .

If you have to install X, you will need
to install the SVGA version of X or one
of the versions tailored for various
accelerated graphics chipsets, and run
the display in 256-color mode (not
monochrome or 16-color mode, or the
16- or 32-bit color modes available in
XFree86 3 .1) . DOOM will not work
with a display whose color depth is
anything other than 8 bits .

Error: Demo is from different game
version

This comes up if you give just the
command "sdoom" or "xdoom" and wait
for the game to play the prerecorded
demos in the registered WAD files . At
this time, the Linux DOOM executables
think they're for version 1 .8, while most
likely you have WAD files for version
1 .9 (if you're a real DOOM fiend) or
1 .666 (if you're a wimp and haven't
upgraded yet) . If you are using the
shareware WAD file, then it's still
version 1.8 and actually will play its
demos .

The way around this, of course, is to
invoke sdoom or xdoom with the "-
warp" command-line option to jump
directly into the game and skip the
demos :
sdoom -warp 1 1

This will place you in Episode 1,
Level 1 of registered DOOM . If you are
using DOOM H, then you give only one
number for the level you want to jump
into.

Next issue: more problems and their
solutions to get you into the game!

l

	page 1
	page 2
	page 3
	page 4

