
MUUG Lines 1 February 1993

MUUG Lines
Volume 5, Number 4 February 1993 $2.50

Newsletter of the Manitoba UNIX User Group

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Is There SIGnificant Interest?
By Bary Finch

Manitoba UNIX User Group

Well, here’s my first article, and it starts with a bad
pun at that. I am working my way into my role as vice-
president, and gaining a better understanding of
MUUG as I go.

My first main task will be to assist in the formation
of one or more Special Interest Groups (SIGs). The
purpose of SIGs is to enable specific interests to be
pursued to a greater depth than is allowed by MUUG’s
regular meeting schedule. I had requested ideas for
SIGs that people would like to see formed, and so far
two specific ideas for SIGs have been put forward.

Derek Hay has suggested forming a “System
Administration” SIG. This group would exist to
examine the “basics” of system administration in
UNIX. Many of you may have exposure to UNIX, but
have not had the opportunity to delve into system
administration.

This kind of SIG may benefit greatly from the use
of hardware and software to enable experimentation, if
it is desired by the group. This would then become a
main focus of the group to see if there are facilities
available, or SIG members that have equipment
available.

Another suggestion comes from Rennie Allen. He
would like to form a SIG for “Real Time” systems.

This SIG would explore aspects of UNIX as a real time
operating system, as well as programming for real time
applications.

As with the system administration SIG, equipment
would probably be an integral part of the group.
Rennie may have access to a version of the QNX
operating system, as well as hardware to run it on. This
will have to be explored further when the SIG forms.

For either of these SIGs we will need at least ten
people to express a commitment to forming the SIG.
This would be sufficient numbers to support any
activities that the SIG may want to undertake.

Please let me know if you are interested in either of
these SIGs. You can e-mail me at bfinch@muug.mb.ca,
or at work: finch@torvm3.vnet.ibm.com, or call me at
work: 934-2723 (warning: voice mail awaits!). If
sufficient interest exists for either group, I will co-
ordinate getting the first meeting arranged.

After that, the SIG will need to assign appropriate
roles to its members to continue its activities, for
example a group “coordinator,” and then the real fun
can begin! ✒
Bary Finch is a Systems Engineering Representative
with IBM in Winnipeg. He is the current MUUG vice-
president.

THIS MONTH’S MEETING INSIDE THIS ISSUE

Meeting Location:
Our next meeting is scheduled for Tuesday,
February 9, at 7:30 PM. Once again, the meeting
will be held in the auditorium of the St-Boniface
Hospital Research Centre, just south of the hospital
itself, at 351 Taché. You don’t have to sign in at
the security desk – just say you’re attending the
meeting of the Manitoba UNIX User Group. The
auditorium is on the main floor, and is easily found
from the entrance.

Meeting Agenda: See inside for details.

Newsletter Editor’s Ramblings2
President’s Corner3
Feedback: Ask Monsieur Ex3
Hands-on: Mail Aliases on MONA...........4
Hands-on: Configuring UUCP5
Hands-on: Sybase Database Objects6
The Fortune File7
UniForum Superuser Award8
Feb. 9th Meeting Agenda8

MUUG Lines 2 February 1993

The Manitoba UNIX User Group meets at
7:30 PM the second Tuesday of every month,
except July and August. Meeting locations
vary. The newsletter is mailed to all paid-up
members one week prior to the meeting.
Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter’s mailing label. Membership dues
are accepted by mail, or at any meeting.

Manitoba UNIX User Group
P.O. Box 130

Saint-Boniface, Manitoba
R2H 3B4

Internet E-mail:
editor@muug.mb.ca

RAMBLINGS

Copyright Policy and DisclaimerThe 1992-1993 Executive

Our Address Group Information

Living In Interesting Times
By Gilbert Detillieux

“May you live in interesting times,” says the old Chinese curse.
As I sit and write this on Chinese New Year’s day, I can’t help
but think that this applies to our time. With all the changes
we’ve seen in the political world in the last few years, how can
we not find this “interesting”? Certainly, great tension and
upheaval exists during such times, making things not only
interesting, but stressful and a little frightening as well (hence
the curse).

Of course, “interesting times” is also a good way to
describe the rapid technological changes we see around us.
These changes create lots of new opportunities, and interesting
possibilities we wouldn’t have even imagined. On the other
hand, such changes, if not managed in a responsible way, can
create lots of new problems and casualties. Whether or not we
benefit and prosper depends on how we adapt to the changing
times.

UNIX now seems positioned as an engine of change. The
computer industry started in a very centralised way, with a few
computer centres controlling information technology for a large
number of people. The microcomputer then created a popular
revolution, where individuals now were in control, and free to
develop their own information technology solutions indepen-

dently. This created information islands, with little communica-
tion (computer or human) between them. Now, with the advent
of wide-spread networking, and the realisation that improved
communication is key to effective use of computer technology,
UNIX and open system technology provide the missing link.
UNIX is becoming the glue that binds the various technologies,
and allows greater interoperability.

Yet, there is great resistance to this change. Many in the
industry see UNIX as a threat, since it means more learning,
and abandoning a lot of the old ways. Since change in our
industry is inevitable, we should accept the challenge it poses,
rather than resisting. Whether UNIX or some other system wins
out in the end is irrelevant – the point is things will change, and
if we manage that change properly, we stand to gain.

Learning to cope with new technology, and facilitating that
learning for others, is what computer user groups are all about.
The recent interest in forming special interest groups in
MUUG, and the large number of “hands-on” articles I’ve
received for the newsletter are signs that our members are
meeting the challenge of learning head-on.

May the year be an interesting one for you. I hope to see
all of you at this month’s meeting. ✒

President: Susan Zuk (W) 788-7312
Vice-President: Bary Finch (W) 934-2723
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Roland Schneider 1-482-5173
Membership Sec.: Richard Kwiatkowski 589-4857
Mailing List: Roland Schneider 1-482-5173
Meeting Coordinator: Paul Hope (W) 237-2361
Newsletter editor: Gilbert Detillieux 489-7016
Publicity Director Gilles Detillieux 489-7016
Information: Susan Zuk (W) 788-7312

(FAX) 788-7450
(or) Gilbert Detillieux (H) 489-7016

(FAX) 269-9178

This newsletter is opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

MUUG Lines 3 February 1993

Events Past, Present, and Future
By Susan Zuk, President

PRESIDENT’S CORNER

FEEDBACK

Dear Faithful Readers,
Last month, you might recall, we left you with the

following question, from Roland Schneider, as a quiz.
What is the significance of 6:00 pm, December 31,

1969?
I then added a couple more dates for which you may

want to figure out the significance:
Mon Jan 18 21:14:07 2038
Fri Dec 13 14:45:52 1901

(For all of these, you were to assume Central Standard
Time.)

Eh bien, mes amis, Monsieur Ex will leave you in
suspense no longer. The solution to Roland’s question first,
since this is a rather easy one. That given date and time,
when converted to Greenwich Mean Time (GMT) or
Universal Coordinated Time as it is now more accurately
called, is January 1, 1970 at exactly midnight. This is what

is known, in UNIX folklore, as the epoch. That is the time
“when time began” on UNIX, which maintains time as the
number of seconds elapsed since the epoch.

On most UNIX systems today, this counter is a 32 bit
signed long integer. At some point, this counter will exceed
the largest positive value that can be represented, and wrap
around to negative value, giving the following times:

0x7FFFFFFFL = Tue Jan 19 03:14:07 2038 (GMT)
0x80000000L = Fri Dec 13 20:45:52 1901 (GMT)

These dates and times, when converted to CST,
correspond to the other dates and times in the quiz. ✒

Monsieur Ex, a mysterious Frenchman who claims to be an
old editor and an expert in UNIX, will return again next
time he’s asked questions, so don’t forget to write in, kids!
Gilbert Detillieux, a French-Canadian of non-mysterious
origins, is mysteriously still the MUUG newsletter editor.

Ask Monsieur Ex
A column in which our resident UNIX expert answers questions submitted by members,

or discussed at round table sessions.
By Gilbert Detillieux

January proved to be very busy for the Manitoba UNIX User
Group. On top of holding our regular monthly meeting we co-
hosted a second event with CIPS (Canadian Information Processing
Society) and the Winnipeg PC Users Group. I’ll first give you a
synopsis of our meeting held on January 12th.

Mr. Jim Baglot, of Frame Technology Corporation, was our
guest for last month’s meeting. He flew in from Vancouver to
provide us with a presentation on FrameMaker, FrameViewer and
FrameBuilder.

FrameMaker is more than a desktop publishing system, it is
described as a document publishing system. What this means is
that you use it for more than just word processing and graphics
work. This system is one that you can base your whole organiza-
tion around. Networked systems can hold documents, like
letterhead, memos and user manuals. These can be shared and
accessed at any time. Information can be retrieved in a query-like
fashioned by clicking on pictures, linked words or phrases (using
hyper-text) or documents may be used as templates with input
stops. These documents can in turn be printed out or mailed
electronically between office users internally or externally by
various means.

This product and presentation was very interesting in a number
of ways. It provided us with a look at some “shrink-wrapped”
software written for many platforms, including DOS and UNIX,
and it showed us the type of power and flexibility there is for those
users and organizations who really need a product to handle their
internal document woes. It also showed us how the office of the
future may look. Documents like memos and letterhead being held
electronically, not in storage rooms. Changes being made and
received, instantly not at the next shipment of paper. Things like

training manuals, specification sheets being on-line for those who
require up-to-date and many other automation requirements.

At the end of the presentation, Jim drew for a free copy of
FrameMaker. The lucky winner was Michael Doob of the Univer-
sity of Manitoba. Congratulations to Michael. Maybe he can
provide us with a first-hand review of this interesting and timely
product. Thank you Jim for your presentation. Another special
thanks goes to Roland Schneider for bringing in his huge monitor
for the event. It’s called weight training, right Roland? Also thanks
to Paul for setting up the viewing environment.

Our second event of the month was an evening with Jeffrey
Armstrong, otherwise known as Saint Silicon. This was a fun
evening with, as he states, the world’s first computer comedian. He
came to us from Santa Cruz, California, and entertained us with his
computer humour. A thank you goes out to the CIPS organization,
which funded this presentation and allowed us to take advantage of
his visit to Winnipeg. It was interesting to see how the Saint
showed us how computers run our lives and not the other way
around!

Please take note of Bary Finch’s column on SIG’s. We have
had a number of people requesting the creation of certain special
interest groups. If you have more suggestions or would like to help
out, please give Bary a call.

On the last page of the newsletter there is a request for
nominations for an award. This award is called the Canadian Open
Systems Superuser and is sponsored by UniForum Canada. Take a
look at this article to find out more about the award. If you have
suggestions or nomination(s) please call me.

I shall close for now, and look forward to seeing you at our
February meeting. ✒

MUUG Lines 4 February 1993

HANDS-ON

Mail Aliases on the MUUG Online System
By Gilbert Detillieux

UNIX systems that use sendmail as the mail transfer agent,
such as the MUUG Online system (mona), provide a means
of addressing mail to a mail alias, rather than only to a
user’s actual user ID on that system. This is a very useful
feature, since it allows for mail to be redirected to the
appropriate user or users, whether they are on the same
system or not. It also allows for mail to be sent to fixed,
easily remembered names, without worrying about the
actual users’ addresses.

On the MUUG Online system, we’ve made good use of
this feature, and have set up several aliases for your
convenience. These are stored in a file called /etc/
aliases, if you want to take a look at them. However, this
file only indicates what the aliases expand to, and not
necessarily what they mean and when it’s appropriate to use
them.

Since many users aren’t aware of these yet, or may be
unclear on what the purpose of these aliases is, here is a
summary of the important ones that we’ve set up. Please
look over the list, so you’ll know where to send e-mail
when you need to. If you’re logged onto mona, you just
have to give the alias name as a mail address; on other
systems, specify <alias@muug.mb.ca> as the address, where
alias is the name of the mail alias to which you want to
send.

postmaster
This is a standard alias on all systems that conform to the
Internet mail standards. It refers to the local user that is
responsible for administration of e-mail on this system. You
can send mail to this person if you experience problems with
delivery of mail, such as when a message bounces back to
you for no obvious reason. (Check the message carefully
first, to determine whether the local postmaster or the one at
the destination address should be notified, if there is a
problem, or to determine if it’s something you can correct
yourself.) The postmaster at a particular site can also be
contacted to determine the e-mail address to use to send to a
particular person at that site.

MAILER-DAEMON
This alias, also a standard on most Internet mail systems, is
used by the mail software when it must generate its own
messages. For example, it is used as the return address on
messages that bounce back. This is usually the same person
as postmaster. You will likely never have to actually send
mail to this alias.

muug
This is essentially MUUG’s “general delivery” address, and
should only be used when there isn’t a more appropriate
address that you’re aware of. This address goes to the
postmaster, who can then forward the message as required.

info
This is for general group information enquiries. This might
be used, for example, by someone who wants to know what
MUUG is about, or where and when the next meeting is.

membership
This is for enquiries specifically about membership. For
example, if a non-member wants to be added to the mailing

list to receive application forms, if someone want to know
about dues, or if someone has a question about his/her own
membership status.

board
This is for communicating with all board members. This is
used extensively by board members to keep each other
informed, but can be used by anyone who’d like to address
the MUUG board. Discussions about by-laws, policy,
special events, or ideas for new initiatives are encouraged.

cuc
This is for the MUUG Online computer use committee.
Again, this is used mainly by committee members, but is
there for anyone who’d like to address the committee on
issues of computer usage policy and guidelines.

admin
This is the small, busy group of users on mona that act as
system administrators. Use this alias to report problems with
the system, or other things about the system that should be
brought to the attention of the administrators. You can also
use this alias when you need to ask a question about using
the system, but this should be one of your last recourses.
Make sure you’ve tried other ways of getting help, such as
the “help” and “man” commands, as well as the “news” and
“gopher” commands. You might also want to try posting a
question to one of the local network news groups, such as
“muug.general” or “muug.help” (the latter would be better).
That way, others can help as well, and you’ll likely get the
answer you want more quickly.

uucpadmin
This is the person responsible for administration of UUCP on
mona. Questions or problems regarding setup and config-
uration of a UUCP connection to mona can be addressed to
this alias.

editor
This is the current MUUG Lines newsletter editor-in-chief.
You can mail enquiries about the newsletter, or (better yet)
articles you’d like to submit, to this address.

muuglines
Same as above.

edcom
This is the group of people on the MUUG Lines editorial
committee. This includes the editor, as well as several
helpful assistants. The alias can be used by anyone, but is
used primarily by committee members so they can easily
communicate to each other. (Actually, it’s used mainly by
the editor, when he wants to gripe about the lack of submit-
ted articles, or the looming deadlines.)

mailing
This is the group of people who help with stuffing envelopes
and mailing out the newsletter. The alias is used mostly to
remind volunteers of upcoming mailings, and to discuss
scheduling.

m-ex
This is the alias for our mysterious old French friend,
Monsieur Ex. You can mail him questions, or bits of trivia,
about UNIX. These will be answered either by e-mail, or in
the “Ask Monsieur Ex” column in the newsletter, or both.
(He likes mail, so don’t be shy.) ✒

MUUG Lines 5 February 1993

HANDS-ON

Introduction
UUCP means UNIX to UNIX Copy Program, but it’s also a
whole subsystem of programs intended to provide an entire
range of services on UNIX and other systems. While UUCP
is a standard on all UNIX derived systems, it is also
available on other systems such as VMS, MS-DOS, and OS/
2. I run stock (referred to as HoneyDanber after the authors)
UUCP on my IBM RISC System/6000 Model 220 at the
office and the OS/2 based UUPC on my 386 at home.

I’ve always wanted to work with UUCP, but have never
worked with more than one system at a time — mona’s
emergence has allowed me a base point on which to base an
entire network of systems. This is fortunate as I’ve since
begun to work setting up UUCP with a number of other
UNIX systems owned by my clients.

The UUCP system is also part of a standard package on
most modern UNIX systems named BNU, for Basic
Networking Utilities. UUCP is the first and simplest part of
BNU, which also includes TCP/IP based networking and
SLIP, Serial Line Internet Protocol, an asynchronous dial-
up method of linking computers via TCP/IP into a Wide
Area Network (WAN).

Once I realized that I now had all the tools to set up a
WAN encompassing my home and office machines as well
as customer machines, I began to link up the systems for
which I am responsible one-by-one. Mona, of course,
provides a link into the Internet for my personal systems.
These articles, three in all, cover what I experienced while
setting the systems up. This first article talks about setting
up basic UUCP links between UNIX systems (with a little
bit about my home OS/2 system for good measure) with
subsequent articles describing more hairy operations —
setting up for properly routed electronic mail (with domain
based addresses) and setting up to receive USENET news
groups.

UUCP — What Does It Do For Me?
UUCP consists of a number of tightly interwoven programs
which provide various functions for the system. They can
be split into three basic classes — file transfer, mail
handling, and remote execution of commands. The first two
are in most cases one and the same since what is mail
besides a file which receives special handling at either end
of the transfer?

The actual uucp command (note the lower case) simply
allows the user to do a cp command across multiple
systems. Using UUCP allows you to:
• Transfer files from your system to another with a

simple command line — as opposed to sending files via
kermit or Zmodem, UUCP allows you to “batch” files
for transmission and have them sent to your system
automatically when convenient. For example, you
might wish to set up UUCP to poll mona hourly to pick
up files and mail. The files will be sent in the next
UUCP transfer.

• Send and receive mail from your system to other
systems, either through basic UUCP or, if you are
connected to an Internet machine such as mona,
through the Internet.

Configuring UUCP, Part One
By Gord Tulloch <gordt@cyberspc.muug.mb.ca>

• Send and receive USENET newsgroups, a special class
of mail.

Configuring UUCP
To configure UUCP, you must first edit a number of
standard files on your system. In AIX (and I assume most
recent UNIX systems that are moving to OSF/1 compli-
ance) these files are located in the /usr/lib/uucp directory.
Let’s look at each file in depth and see what has to be done.
I’ll use a link with mona in all cases since that’s what most
people will be doing first anyway!

/usr/lib/uucp/Devices
The Devices file is used to inform the UUCP system what
devices are available in a pool at what baud rates and so on.
When any program in the UUCP system (uucico or cu, for
example) requires a modem, they consult this file, lock the
device, and start operations. Here’s an example of the
entries in this file:

ACU tty1 - 2400 hayes
Direct tty2 - 19200 direct
I won’t go through these entries in detail due to space

limitations; consult your manual for details.
/usr/lib/uucp/Systems

The Systems file lists the systems that you are able to
connect with directly. They can include systems dialed into
via modem, direct serial link-ups as well as TCP/IP net-
worked systems. For example, the following entry is
required for mona (on a single line):

mona Any ACU 2400 275-6150 "" \d\d\r\c classn
\p\pmuug ogin: \036\c > set\sxb=on >
set\secmc=dis > res resumed \pUxxxxxx\n\c
assword: xxxxxxxx\n\c
The first field gives the system name, the second the

times that the system can be called, the third specifies what
kind of connection is required to link to the system (ACU
means Automatic Calling Unit, or some such!), fourth the
baud rate, next the phone number (if an ACU setup) and the
rest is a “chat script,” which is in the “get this/send this”
pair format. When the calling UUCP program (/usr/lib/
uucp/uucico) receives the first text string it will send the
second. Since UUCP uses the same login people do, but
with special accounts, this is simply how to log into the
system.

You will note that due to the 7 bit Telnet link that must
be reconfigured on mona to do 8 bit transfers the mona
sequence is far more complicated than normal — here’s one
for a UNIX system that’s a direct dial to a tty port:

systemx Any ACU 2400 555-1212 ogin:--ogin:
nuucp assword: ThisPass

This script waits for the login prompt (sending a CR if it
doesn’t get it in a few seconds and waiting again), logs in
under the nuucp account (commonly used for “anonymous,”
non system-specific UUCP logins) and upon receipt of the
password prompt sends the password. The called system
then invokes the uucico program which initiates the
machine to machine transfers. More on uucico later.

/usr/lib/uucp/Permissions
This file defines what permissions the calling (or called!)
system has on your machine. Two sections are required,

MUUG Lines 6 February 1993

HANDS-ON
MACHINE and LOGNAME, which define what the system
can write to on your disk, what commands it can execute
(via the uux remote execution command) and other func-
tions. Here’s my permissions for mona:

MACHINE=mona REQUEST=yes READ=/ WRITE=/ \
COMMANDS=rmail:uucp:rnews:uux

LOGNAME=mona REQUEST=yes SENDFILES=yes \
READ=/usr/spool/uucppublic \
WRITE=/usr/spool/uucppublic \
COMMANDS=rmail:rnews:uux:uucp:news \
CALLBACK=no

/usr/lib/uucp/Poll
This file is simply a list of systems with times they can be
polled. UNIX systems normally have a cron job that runs a
batch file to look at this file and run uucico on the system if
a poll is required. Look at the crontab for the uucp user on
your system — the command

su uucp -c "crontab -l"
should list it for you (if you are the root user anyway!).

The Poll file consists of entries such as:
mona 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23
AIX requires a tab between system name and the hours

to poll. As you can see, my RS/6000 polls mona every hour
on the hour daily.

Testing UUCP
You should first send mail on mona to the uucpadmin

alias to request a userid and password for your system —
this information must go into your Systems file.

While you await our busy Sysop’s reply, test your
installation by entering

cu mona
This should invoke the simple cu comm program and dial
into the named system (in this case, mona). The cu program

can also be used as a terminal program for your modem by
entering speed and port on the command line. See your
manual for details. If this doesn’t work, uucp will fail also.

If and when this works and you have your system
userid, you can now try a UUCP poll:

/usr/lib/uucp/uucico -smona -r1 -x9
which calls the system specified in the -s parameter, with
your system acting as the “master,” with a debugging level
of 9 so you can see what’s happening (or not happening!).

Sending Files Via UUCP
Once you are up and running, you can test uucp on

mona by entering
uucp .cshrc cyberspc!~/

where cyberspc is the name of my system. Note that the
destination is in bang (!) path format, which specifies the
destination system, an exclamation point (bang) and the
target directory. The characters ~/ are shorthand for the
default spool directory on the destination system. This
command instructs mona to create a batch entry to send your
.cshrc file to the public directory on the cyberspc system
(normally /usr/spool/uucp/uucpppublic, but on my OS/2
system it’s D:\UUPC\SPOOL\PUBLIC). You may have to set
the rwx bits on your .cshrc file to make sure uucp can
access it — the command

chmod 755 .cshrc
does this, giving rwxr-xr-x access to the file. You may
wish to have uucp make a spool copy of your file so you
can reset these bits immediately — the command would
look like this:

uucp -C .cshrc cyberspc!~/
The administrators would probably appreciate it if you

didn’t do this with 3 meg files!
Once you have this working, you are ready to imple-

ment mail. We’ll look at this next time. ✒

Sybase Database Objects
By Scott Balneaves

This article is somewhat specialized; however, since there are
some people here at the group who use Sybase at their workplace,
I hope that some of you will be able to use this.

This was one of my first forays into C++ several months ago.
I’m still learning but I’ve done some slightly more complex
things than this. However, this small program fragment was
useful to me in solving a quick and dirty problem, and it demon-
strates some of the fundamental aspects of C++, and Sybase.

Basically, what has been done here is to create a simple
object class that allows you to hide some of the nastier bits of
code that goes on in a Sybase query deep in the object. This
results in a much cleaner API to Sybase. I’ll step through the
object a piece at a time, and comment on what it’s doing.

How the Object Works
Because of the fact that the Sybase include files aren’t in C++
(they aren’t even in ANSI C — ugh!), we have to enclose them in
the construct that you see at the top of the file:

extern “C” {
...
}
You will notice that our DBPROCESS and LOGINREC structures

are in the private part of the object. This hides them from being
seen from anything but this object. No need to worry when you
have multiple threads about keeping the DBPROCESS pointers from
clobbering each other.

I have two constructors. One is the constructor with no arg-
uments, which simply does the dbinit(). The second constructor
accepts your userid and password for Sybase as arguments. You
can either create the object with no args, and use the login()
function, or pass the userid and password as part of the creation.

The bind and exec are fairly straightforward. If you are
familiar with the Sybase API, these make sense. I’ve just
eliminated some of the tedium.

The destructor at the end will automatically do the dbexit()
for you when you pass out of the scope that the object was
instantiated in. Or, you can explicitly call the logout if you like.

So what does it all look like? I’ve created a small mainline
(and Makefile) to go along with this object. Just follow the
comments, and I think you’ll agree: this looks a lot less compli-
cated than the normal C Sybase hoops you have to jump through.

I hope to use this as a prelude to an introduction to a series of
C++ articles, much along the lines of the RPC series I did last
year. I hope people will be interested in this series of articles. If
you’d like to drop me a line, you can from mona. Simply mail
<sbalneav@silver.cs.umanitoba.ca>, and I’ll do the best I can to
help you. ✒

The source code referred to in this article is available via
anonymous FTP on mona.muug.mb.ca, under the directory
pub/muuglines/source/sybase-obj.

MUUG Lines 7 February 1993

THE FORTUNE FILE CLASSIC

Selecting a Programming Language Made Easy
By Daniel Salomon and David Rosenblueth

Departments of Computer Science, University of Manitoba and Acadia University (resp.)
Originally appeared in the September 1986 issue of SIGPLAN Notices, Volume 21, Number 9. (Reprinted with author’s permission.)

With such a large selection of programming languages it
can be difficult to choose one for a particular project.
Reading the manuals to evaluate the languages is a time-
consuming process. On the other hand, most people already
have a fairly good idea of how various automobiles com-
pare. So in order to assist those trying to choose a language,
we have prepared a chart that matches programming
languages with comparable automobiles.

Assembler
A Formula I race car. Very fast, but difficult to drive and
maintain.

FORTRAN II
A Model T Ford. Once it was the king of the road.

FORTRAN IV
A Model A Ford.

FORTRAN 77
A six-cylinder Ford Fairlaine with standard transmission
and no seat belts.

COBOL
A delivery van. It’s bulky and ugly, but it does the work.

BASIC
A second-hand Rambler with a rebuilt engine and patched
upholstery. Your dad bought it for you to learn to drive.
You’ll ditch it as soon as you can afford a new one.

PL/I
A 1968 Chevrolet Impala convertible with automatic
transmission, a somewhat peeling two-tone paint job, tires
with 4-inch whitewall trim, chrome exhaust pipes, BIG
tailfins, and fuzzy dice hanging in the windshield.

C
A black Camaro, the HE-man car. Comes with optional
seat belts (lint and dbx), and required fuzz-buster (escape
to the assembler).

C++
A pink Camaro with lace ruffled curtains in the windows
and five training wheels.

ALGOL 60
An Austin Mini. Boy, that’s a small car!

Pascal
A Swiss hand-made Volkswagen Beetle. It’s small but
sturdy. Was once popular with intellectuals and other
quiche eaters.

ALGOL 68
An Aston Martin. An impressive car, but not just anyone
can drive it.

SmallTALK
John Lennon’s psychedelic Rolls-Royce. There is no
question that the car is good, but not everyone has the guts

to drive something flashy around. Besides, what do you do
with the photocopier in the trunk, anyway?

LISP
A BMW 735i. Becoming trendier and trendier, faster and
faster, larger and larger, but still hasn’t quite got it there.
So many models, colors, and options are available that you
simply try to choose what’s “in” this week, and sometimes
miss. Seat belts not available with most models, and some
of the Japanese versions seem to be missing the engine.

T
A pickup truck with an ergonomic cabin and a Honda
Civic engine. Very easy to learn, but then what?

PROLOG
A Jaguar. “The” car on the Dom Perignon-caviar circuit,
but the casual drivers can neither afford to buy, nor can
they afford to maintain it, though they all wish they could
one day get their hands on it. Comes in a lot of colors and
with so many options that it takes books just to list some
of the capabilities.

FLAVORS
An ice-cream truck that has just been in an accident. You
never really know all the mixins you are getting with every
flavor, but you can break a tooth on some of those nuts.

MACSYMA
A Jeep-based limousine. Absolutely ridiculous to look at,
guzzles the gas like crazy, but will go through anything
given the proper driving techniques.

FORTH
A go-cart.

LOGO
A kiddie’s replica of a Rolls-Royce. Comes with a real-
looking engine and a working horn.

APL
A double-decker bus always painted deep BLUE. It takes
rows an columns of passengers to the same place at the
same time; but, drives only in reverse gear, and is instru-
mented in Greek.

LOOPS
A top-of-the-line Winnebago. The car has got so many
amenities that you could probably live in it, but boy does it
guzzle the gas!..

Ada
An army-green Mercedes-Benz staff car. Power steering,
power brakes and automatic transmission are all standard.
No other colors or options are available, except by passing
a Bill through Congress. If it’s good enough for the
generals, it’s good enough for you. Manufacturing delays
due to difficulties reading the design specifications are
starting to clear up. ✒

Submitted by Tom Dubinski
From: leech@cs.unc.edu (Jon Leech). Source: rec.humor.funny

After the 3rd or 4th consecutive daily crash of one of our critical (and incredibly flaky) DECservers, the following was
posted to a local newsgroup by a frustrated user:
 As a friend once said, “If the car industry behaved like the computer industry over the last 30 years, a Rolls-Royce
would cost $5, get 300 miles per gallon, and blow up once a year killing all passengers inside.” ✒

MUUG Lines 8 February 1993

MEETINGS

Coming Up

Meeting:
Next month’s meeting is scheduled for Tuesday, March
9, at 7:30 PM. Meeting location will be given in the
March newsletter. The meeting topic is also to be
announced.

Got any ideas for meeting topics? Any particular
speaker or company you’d like to see at one of our
meetings? Just let our meeting coordinator, Paul Hope,
know. You can e-mail him at <phope@muug.mb.ca>.

Newsletter:
There are a few articles in the pipeline, and a few more
that should be on the way, including a review of The
Whole Internet User’s Guide & Catalog. Of course, I
can always use some more material, especially shorter
articles – half a page to one page would be fine.
Monsieur Ex has also let me know that his mail-box is
empty once again – please submit your questions to the
old guy via e-mail to <m-ex@muug.mb.ca> or by FAX
to the MUUG Lines editor.

Agenda
for

Tuesday, February 9, 1992, 7:30 PM
St-Boniface Hospital Research Centre

Theatre, Main Floor, 351 Taché

1. Round Table 7:30

2. Business Meeting 8:00
a) President’s Welcome
b) New Business

3. Break 8:15

5. Presented Topic 8:30
Electronic Publishing with TEX and LATEX
By Michael Doob, University of Manitoba
As a counterpoint to last month’s presentation on
FrameMaker, this month, we will look at a very popular
batch-oriented tool for electronic type-setting. This system
is widely used by many academics, particularly those in
mathematics and other branches of science and
engineering, due to its powerful equation layout language.
Michael Doob uses this system, among other things, to edit
the Canadian Math Society Journal. The demonstration
will be on a live system, with the display connected
(hopefully) to a large projection TV unit.

6. Adjourn 9:30

Note: Please try to arrive at the meeting between
7:15 and 7:30 pm. Thank You.

UniForum Canada is currently calling for nomina-
tions for its annual Canadian Open Systems
Superuser award. This award is given each year to
individuals who have made extraordinary contri-
butions, in any field, to the Canadian UNIX and
Open Systems Community. The award need not
recognize achievements for a single calendar year,
but can be more broad in scope. An award recipi-
ent need not be a member of UniForum Canada or
an affiliate body. Organizations or incorporated
bodies are not eligible.

Nominations for this award must be made, and
seconded by members of UniForum Canada or an
affiliate group. Nominations must be received by
the Award Coordinator, Susan Zuk, by March 10,
1993. Anyone who would like to submit a nomi-
nation (or more) or would like more information
please call Susan at 788-7312.

The award will be presented to the recipient(s)
at UniForum Canada’s Annual UNIX Show which
is to be held this coming April.

Canadian
Open Systems

Superuser
Sponsored by

UniForum Canada

